Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por CRAS

2021

Remote Hyperspectral Imaging Acquisition and Characterization for Marine Litter Detection

Autores
Freitas, S; Silva, H; Silva, E;

Publicação
REMOTE SENSING

Abstract
This paper addresses the development of a remote hyperspectral imaging system for detection and characterization of marine litter concentrations in an oceanic environment. The work performed in this paper is the following: (i) an in-situ characterization was conducted in an outdoor laboratory environment with the hyperspectral imaging system to obtain the spatial and spectral response of a batch of marine litter samples; (ii) a real dataset hyperspectral image acquisition was performed using manned and unmanned aerial platforms, of artificial targets composed of the material analyzed in the laboratory; (iii) comparison of the results (spatial and spectral response) obtained in laboratory conditions with the remote observation data acquired during the dataset flights; (iv) implementation of two different supervised machine learning methods, namely Random Forest (RF) and Support Vector Machines (SVM), for marine litter artificial target detection based on previous training. Obtained results show a marine litter automated detection capability with a 70-80% precision rate of detection in all three targets, compared to ground-truth pixels, as well as recall rates over 50%.

2021

Hyperspectral Imaging System for Marine Litter Detection

Autores
Freitas, S; Silva, H; Almeida, C; Viegas, D; Amaral, A; Santos, T; Dias, A; Jorge, PAS; Pham, CK; Moutinho, J; Silva, E;

Publicação
OCEANS 2021: SAN DIEGO - PORTO

Abstract
This work addresses the use of hyperspectral imaging systems for remote detection of marine litter concentrations in oceanic environments. The work consisted on mounting an off-the-shelf hyperspectral imaging system (400-2500 nm) in two aerial platforms: manned and unmanned, and performing data acquisition to develop AI methods capable of detecting marine litter concentrations at the water surface. We performed the campaigns at Porto Pim Bay, Fail Island, Azores, resorting to artificial targets built using marine litter samples. During this work, we also developed a Convolutional Neural Network (CNN-3D), using spatial and spectral information to evaluate deep learning methods to detect marine litter in an automated manner. Results show over 84% overall accuracy (OA) in the detection and classification of the different types of marine litter samples present in the artificial targets.

2021

OceanACT - Building a European Centre for the Demonstration of Innovative Technologies from the Blue Economy in Portugal

Autores
Vieira M.; Aguilera L.; Pinho C.; Alves M.; Brito E Melo A.; Eiras R.; Costa A.; Sarmento A.; Silva E.;

Publicação
Oceans Conference Record (IEEE)

Abstract
The oceans have the capability to support the current transitions occurring within our societies, including the implementation of clean energy production and storage technologies and new paths for sustainable food production. These transitions are, nonetheless, many times dependent on innovative technologies which require long paths of technology maturation before they can fit the existing ecosystems and markets. One critical step for technology validation is the demonstration stage in real offshore conditions, which is necessary to validate the performance of the proposed technologies, as well as their reliability and economic viability. In this respect, Portugal has been the testbed of several ocean-based technologies, including the Windfloat device, and possesses the necessary infrastructures to implement and test further innovative concepts and designs. Still, these infrastructures are currently underutilized, which means more technology developers could be testing and implementing their technologies in the country. This paper presents the OceanACT initiative, which is being led by five partners, + ATLANTIC, CEIIA, Fórum Oceano, INESC TEC and WavEC, aiming to promote and manage the existing offshore testing infrastructures in the country. The vision and the strategic path for the initiative, as well as the available infrastructures, and its respective metocean conditions, are presented here. This initiative intends to attract new technology developers to the country, and consequently generate relevant socioeconomic benefits, such as the attraction of investment, the inclusion of the national industry into the supply chain of these innovative projects, and the creation of highly qualified jobs.

2021

COLLECTION AND LIFE SUPPORT IN A HYPERBARIC SYSTEM FOR DEEP-SEA ORGANISMS

Autores
Viegas, D; Figueiredo, A; Coimbra, J; Dos Santos, A; Almeida, J; Dias, N; Lima, L; Silva, H; Ferreira, H; Almeida, C; Amaro, T; Arenas, F; Castro, F; Santos, M; Martins, A; Silva, E;

Publicação
OCEANS 2021: SAN DIEGO - PORTO

Abstract
This paper presents the development of a hyperbaric system able to collect, transport and maintain deep-sea species in controlled condition from the sea floor up to the surface (HiperSea System). The system is composed by two chambers coupled with a transference set-up. The first chamber is able to reach a maximum of 1km depth collecting both benthic and pelagic deep-sea species. The second chamber is a life support compartment to maintain the specimens alive at the surface, in hyperbaric conditions.

2021

A Modular Inductive Wireless Charging Solution for Autonomous Underwater Vehicles

Autores
Agostinho, LR; Ricardo, NC; Silva, RJ; Pinto, AM;

Publicação
2021 IEEE INTERNATIONAL CONFERENCE ON AUTONOMOUS ROBOT SYSTEMS AND COMPETITIONS (ICARSC)

Abstract
In recent years, autonomous underwater vehicles (AUVs) have gained prominence in the most varied fields of application of underwater missions. The most common solution for recharging their batteries still implies removing them from the water, which is exceptionally costly. The use of Inductive Power Transfer (IPT) technologies allows to mitigate the associated costs and to extend the vehicles' operation time. In consequence, a prototype has been developed, whose objective is to integrate commercially available IPT technologies, while allowing the employment by most of the AUVs. The prototype is a funnel structure and its counterpart aimed to be fixed to a docking station and the AUV respectively. When coupled, it enables the batteries to recharge by electromagnetic induction. Energy transmission has been tested, resulting in encouraging results. This particular solution achieved over 90% efficiency during underwater experiments. The next objective will be to develop a commercial version of the prototype, that allows a direct, practical and effective use of wireless charging technologies within this particular scenario.

2021

A 3-D Lightweight Convolutional Neural Network for Detecting Docking Structures in Cluttered Environments

Autores
Pereira, MI; Leite, PN; Pinto, AM;

Publicação
MARINE TECHNOLOGY SOCIETY JOURNAL

Abstract
The maritime industry has been following the paradigm shift toward the automation of typically intelligent procedures, with research regarding autonomous surface vehicles (ASVs) having seen an upward trend in recent years. However, this type of vehicle cannot be employed on a full scale until a few challenges are solved. For example, the docking process of an ASV is still a demanding task that currently requires human intervention. This research work proposes a volumetric convolutional neural network (vCNN) for the detection of docking structures from 3-D data, developed according to a balance between precision and speed. Another contribution of this article is a set of synthetically generated data regarding the context of docking structures. The dataset is composed of LiDAR point clouds, stereo images, GPS, and Inertial Measurement Unit (IMU) information. Several robustness tests carried out with different levels of Gaussian noise demonstrated an average accuracy of 93.34% and a deviation of 5.46% for the worst case. Furthermore, the system was fine-tuned and evaluated in a real commercial harbor, achieving an accuracy of over 96%. The developed classifier is able to detect different types of structures and works faster than other state-of-the-art methods that establish their performance in real environments.

  • 40
  • 182