Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por Aurélio Campilho

2004

A pipelined real-time optical flow algorithm

Autores
Correia, MV; Campilho, A;

Publicação
IMAGE ANALYSIS AND RECOGNITION, PT 2, PROCEEDINGS

Abstract
Optical flow algorithms generally demand for high computational power and huge storage capacities. This paper is a contribution for real-time implementation of an optical flow algorithm on a pipeline machine. This overall optical flow computation methodology is presented and evaluated on a set of synthetic and real image sequences. Results are compared to other implementations using as measures the average angular error, the optical flow density and the root mean square error. The proposed implementation achieves very low computation delays, allowing operation at standard video frame-rate and resolution. It compares favorably to recent implementations in standard microprocessors and in parallel hardware.

2001

Segmentation of object motion: matching psychophysics and computational models

Autores
Santos, JA; Campilho, A; Baptista, C; Correia, MV; Noriega, P; Albuquerque, PB;

Publicação
PERCEPTION

Abstract

2012

Proactive engineering

Autores
Duarte, C; Oliveira, HP; Magalhães, F; Tavares, VG; Campilho, AC; de Oliveira, PG;

Publicação
Proceedings of the IEEE Global Engineering Education Conference, EDUCON 2012, Marrakech, Morocco, April 17-20, 2012

Abstract
This paper presents two initiatives run by groups of engineering students at the University of Porto: the Microelectronics Students' Group and BioStar. These groups are student-led initiatives that promote different scientific fields through self-guided projects. Both experiences have proven to be very successful in increasing the undergraduate student's interest in science and technology. This work reports the activities, organization and main methodologies employed by these groups, which can be seen as successful approaches to enhance the technical curriculum of students. © 2012 IEEE.

2023

Automatic Eye-Tracking-Assisted Chest Radiography Pathology Screening

Autores
Santos, R; Pedrosa, J; Mendonça, AM; Campilho, A;

Publicação
Pattern Recognition and Image Analysis - 11th Iberian Conference, IbPRIA 2023, Alicante, Spain, June 27-30, 2023, Proceedings

Abstract

2023

Lightweight multi-scale classification of chest radiographs via size-specific batch normalization

Autores
Pereira, SC; Rocha, J; Campilho, A; Sousa, P; Mendonca, AM;

Publicação
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE

Abstract
Background and Objective: Convolutional neural networks are widely used to detect radiological findings in chest radiographs. Standard architectures are optimized for images of relatively small size (for exam-ple, 224 x 224 pixels), which suffices for most application domains. However, in medical imaging, larger inputs are often necessary to analyze disease patterns. A single scan can display multiple types of radi-ological findings varying greatly in size, and most models do not explicitly account for this. For a given network, whose layers have fixed-size receptive fields, smaller input images result in coarser features, which better characterize larger objects in an image. In contrast, larger inputs result in finer grained features, beneficial for the analysis of smaller objects. By compromising to a single resolution, existing frameworks fail to acknowledge that the ideal input size will not necessarily be the same for classifying every pathology of a scan. The goal of our work is to address this shortcoming by proposing a lightweight framework for multi-scale classification of chest radiographs, where finer and coarser features are com-bined in a parameter-efficient fashion. Methods: We experiment on CheXpert, a large chest X-ray database. A lightweight multi-resolution (224 x 224, 4 48 x 4 48 and 896 x 896 pixels) network is developed based on a Densenet-121 model where batch normalization layers are replaced with the proposed size-specific batch normalization. Each input size undergoes batch normalization with dedicated scale and shift parameters, while the remaining parameters are shared across sizes. Additional external validation of the proposed approach is performed on the VinDr-CXR data set. Results: The proposed approach (AUC 83 . 27 +/- 0 . 17 , 7.1M parameters) outperforms standard single-scale models (AUC 81 . 76 +/- 0 . 18 , 82 . 62 +/- 0 . 11 and 82 . 39 +/- 0 . 13 for input sizes 224 x 224, 4 48 x 4 48 and 896 x 896, respectively, 6.9M parameters). It also achieves a performance similar to an ensemble of one individual model per scale (AUC 83 . 27 +/- 0 . 11 , 20.9M parameters), while relying on significantly fewer parameters. The model leverages features of different granularities, resulting in a more accurate classifi-cation of all findings, regardless of their size, highlighting the advantages of this approach. Conclusions: Different chest X-ray findings are better classified at different scales. Our study shows that multi-scale features can be obtained with nearly no additional parameters, boosting performance. (c) 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ )

2023

Retinal layer and fluid segmentation in optical coherence tomography images using a hierarchical framework

Autores
Melo, T; Carneiro, A; Campilho, A; Mendonca, AM;

Publicação
JOURNAL OF MEDICAL IMAGING

Abstract
Purpose: The development of accurate methods for retinal layer and fluid segmentation in optical coherence tomography images can help the ophthalmologists in the diagnosis and follow-up of retinal diseases. Recent works based on joint segmentation presented good results for the segmentation of most retinal layers, but the fluid segmentation results are still not satisfactory. We report a hierarchical framework that starts by distinguishing the retinal zone from the background, then separates the fluid-filled regions from the rest, and finally, discriminates the several retinal layers.Approach: Three fully convolutional networks were trained sequentially. The weighting scheme used for computing the loss function during training is derived from the outputs of the networks trained previously. To reinforce the relative position between retinal layers, the mutex Dice loss (included for optimizing the last network) was further modified so that errors between more distant layers are more penalized. The method's performance was evaluated using a public dataset.Results: The proposed hierarchical approach outperforms previous works in the segmentation of the inner segment ellipsoid layer and fluid (Dice coefficient = 0.95 and 0.82, respectively). The results achieved for the remaining layers are at a state-of-the-art level.Conclusions: The proposed framework led to significant improvements in fluid segmentation, without compromising the results in the retinal layers. Thus, its output can be used by ophthalmologists as a second opinion or as input for automatic extraction of relevant quantitative biomarkers.

  • 48
  • 50