2016
Autores
Aurélio Campilho;
Publicação
Abstract
2017
Autores
Aurélio Campilho;
Publicação
Abstract
2018
Autores
Aurélio Campilho;
Publicação
Abstract
2020
Autores
Aurélio Campilho;
Publicação
Abstract
2024
Autores
Pereira, SC; Rocha, J; Campilho, A; Mendonça, AM;
Publicação
HELIYON
Abstract
Although the classification of chest radiographs has long been an extensively researched topic, interest increased significantly with the onset of the COVID-19 pandemic. Existing results are promising; however, the radiological similarities between COVID-19 and other types of respiratory diseases limit the success of conventional image classification approaches that focus on single instances. This study proposes a novel perspective that conceptualizes COVID-19 pneumonia as a deviation from a normative distribution of typical pneumonia patterns. Using a population- based approach, our approach utilizes distributional anomaly detection. This method diverges from traditional instance-wise approaches by focusing on sets of scans instead of individual images. Using an autoencoder to extract feature representations, we present instance-based and distribution-based assessments of the separability between COVID-positive and COVIDnegative pneumonia radiographs. The results demonstrate that the proposed distribution-based methodology outperforms conventional instance-based techniques in identifying radiographic changes associated with COVID-positive cases. This underscores its potential as an early warning system capable of detecting significant distributional shifts in radiographic data. By continuously monitoring these changes, this approach offers a mechanism for early identification of emerging health trends, potentially signaling the onset of new pandemics and enabling prompt public health responses.
2024
Autores
Ferreira, ICA; Venkadesh, KV; Jacobs, C; Coimbra, M; Campilho, A;
Publicação
BIOMEDICAL SIGNAL PROCESSING AND CONTROL
Abstract
Objective: This study aims to forecast the progression of lung cancer by estimating the future diameter of lung nodules. Methods: This approach uses as input the tabular data, axial images from tomography scans, and both data types, employing a ResNet50 model for image feature extraction and direct analysis of patient information for tabular data. The data are processed through a neural network before prediction. In the training phase, class weights are assigned based on the rarity of different types of nodules within the dataset, in alignment with nodule management guidelines. Results: Tabular data alone yielded the most accurate results, with a mean absolute deviation of 0.99 mm. For malignant nodules, the best performance, marked by a deviation of 2.82 mm, was achieved using tabular data applying Lung-RADS class weights during training. The tabular data results highlight the influence of using the initial nodule size as an input feature. These results surpass the literature reference of 348-day volume doubling time for malignant nodules. Conclusion: The developed predictive model is optimized for integration into a clinical workflow after detecting, segmenting, and classifying nodules. It provides accurate growth forecasts, establishing a more objective basis for determining follow-up intervals. Significance: With lung cancer's low survival rates, the capacity for precise nodule growth prediction represents a significant breakthrough. This methodology promises to revolutionize patient care and management, enhancing the chances for early risk assessment and effective intervention.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.