2023
Autores
Brito, CV; Ferreira, PG; Portela, BL; Oliveira, RC; Paulo, JT;
Publicação
IEEE ACCESS
Abstract
The adoption of third-party machine learning (ML) cloud services is highly dependent on the security guarantees and the performance penalty they incur on workloads for model training and inference. This paper explores security/performance trade-offs for the distributed Apache Spark framework and its ML library. Concretely, we build upon a key insight: in specific deployment settings, one can reveal carefully chosen non-sensitive operations (e.g. statistical calculations). This allows us to considerably improve the performance of privacy-preserving solutions without exposing the protocol to pervasive ML attacks. In more detail, we propose Soteria, a system for distributed privacy-preserving ML that leverages Trusted Execution Environments (e.g. Intel SGX) to run computations over sensitive information in isolated containers (enclaves). Unlike previous work, where all ML-related computation is performed at trusted enclaves, we introduce a hybrid scheme, combining computation done inside and outside these enclaves. The experimental evaluation validates that our approach reduces the runtime of ML algorithms by up to 41% when compared to previous related work. Our protocol is accompanied by a security proof and a discussion regarding resilience against a wide spectrum of ML attacks.
2018
Autores
Portela, B;
Publicação
Abstract
2023
Autores
Portela, B; Pacheco, H; Jorge, P; Pontes, R;
Publicação
2023 IEEE 36TH COMPUTER SECURITY FOUNDATIONS SYMPOSIUM, CSF
Abstract
Conflict-free Replicated Data Types (CRDTs) are a very popular class of distributed data structures that strike a compromise between strong and eventual consistency. Ensuring the protection of data stored within a CRDT, however, cannot be done trivially using standard encryption techniques, as secure CRDT protocols would require replica-side computation. This paper proposes an approach to lift general-purpose implementations of CRDTs to secure variants using secure multiparty computation (MPC). Each replica within the system is realized by a group of MPC parties that compute its functionality. Our results include: i) an extension of current formal models used for reasoning over the security of CRDT solutions to the MPC setting; ii) a MPC language and type system to enable the construction of secure versions of CRDTs and; iii) a proof of security that relates the security of CRDT constructions designed under said semantics to the underlying MPC library. We provide an open-source system implementation with an extensive evaluation, which compares different designs with their baseline throughput and latency.
2023
Autores
Brito, C; Ferreira, P; Portela, B; Oliveira, R; Paulo, J;
Publicação
38TH ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING, SAC 2023
Abstract
We propose Soteria, a system for distributed privacy-preserving Machine Learning (ML) that leverages Trusted Execution Environments (e.g. Intel SGX) to run code in isolated containers (enclaves). Unlike previous work, where all ML-related computation is performed at trusted enclaves, we introduce a hybrid scheme, combining computation done inside and outside these enclaves. The conducted experimental evaluation validates that our approach reduces the runtime of ML algorithms by up to 41%, when compared to previous related work. Our protocol is accompanied by a security proof, as well as a discussion regarding resilience against a wide spectrum of ML attacks.
2022
Autores
Lopes, D; Medeiros, P; Dong, JD; Barradas, D; Portela, B; Vinagre, J; Ferreira, B; Christin, N; Santos, N;
Publicação
Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security, CCS 2022, Los Angeles, CA, USA, November 7-11, 2022
Abstract
Tor is the most popular anonymity network in the world. It relies on advanced security and obfuscation techniques to ensure the privacy of its users and free access to the Internet. However, the investigation of traffic correlation attacks against Tor Onion Services (OSes) has been relatively overlooked in the literature. In particular, determining whether it is possible to emulate a global passive adversary capable of deanonymizing the IP addresses of both the Tor OSes and of the clients accessing them has remained, so far, an open question. In this paper, we present ongoing work toward addressing this question and reveal some preliminary results on a scalable traffic correlation attack that can potentially be used to deanonymize Tor OS sessions. Our attack is based on a distributed architecture involving a group of colluding ISPs from across the world. After collecting Tor traffic samples at multiple vantage points, ISPs can run them through a pipeline where several stages of traffic classifiers employ complementary techniques that result in the deanonymization of OS sessions with high confidence (i.e., low false positives). We have responsibly disclosed our early results with the Tor Project team and are currently working not only on improving the effectiveness of our attack but also on developing countermeasures to preserve Tor users' privacy.
2018
Autores
Borges, G; Domingos, H; Ferreira, B; Leitão, J; Oliveira, T; Portela, B;
Publicação
IACR Cryptology ePrint Archive
Abstract
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.