2021
Autores
Dias, L; Leitao, A; Guimaraes, L;
Publicação
RELIABILITY ENGINEERING & SYSTEM SAFETY
Abstract
When making long-term plans for their asset portfolios, decision-makers have to define a priori a maintenance budget that is to be shared among the several assets and managed throughout the planning period. During the planning period, the a priori budget is then allocated by managers to different operation and maintenance interventions ensuring the overall performance of the system. Because asset degradation is stochastic, a considerable amount of uncertainty is associated with this problem. Hence, to define a robust budget, it is essential to account for several degradation scenarios pertaining to the individual condition of each asset. This paper presents a novel mathematical formulation to tackle this problem in a heterogeneous multiasset portfolio. The proposed mathematical model was formulated as a mixed-integer programming two-stage stochastic optimization model with mean-variance constraints to minimize the number of scenarios with an insufficient budget. A Gamma process was used to model the condition of each individual asset while taking into consideration different technological features and operating conditions. We compared the solutions obtained with our model to alternative practices in a set of generated instances covering different types of multi-asset portfolios. This comparison allowed us to explore the value of modeling uncertainty and how it affects the generated solutions. The proposed approach led to gains in performance of up to 50% depending on the level of uncertainty. Furthermore, the model was validated using real-world data from a utility company working with portfolios of power transformers. The results obtained showed that the company could reduce costs by as much as 40%. Further conclusions showed that the cost-saving potential was higher in asset portfolios in worse condition and that defining a priori operation and maintenance interventions led to worse results. Finally, the results showcased how different decision-maker risk-levels affect the value of taking uncertainty into account.
2021
Autores
Dias, L; Ribeiro, M; Leitao, A; Guimaraes, L; Carvalho, L; Matos, MA; Bessa, RJ;
Publicação
QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL
Abstract
Electrical utilities apply condition monitoring on power transformers (PTs) to prevent unplanned outages and detect incipient faults. This monitoring is often done using dissolved gas analysis (DGA) coupled with engineering methods to interpret the data, however the obtained results lack accuracy and reproducibility. In order to improve accuracy, various advanced analytical methods have been proposed in the literature. Nonetheless, these methods are often hard to interpret by the decision-maker and require a substantial amount of failure records to be trained. In the context of the PTs, failure data quality is recurrently questionable, and failure records are scarce when compared to nonfailure records. This work tackles these challenges by proposing a novel unsupervised methodology for diagnosing PT condition. Differently from the supervised approaches in the literature, our method does not require the labeling of DGA records and incorporates a visual representation of the results in a 2D scatter plot to assist in interpretation. A modified clustering technique is used to classify the condition of different PTs using historical DGA data. Finally, well-known engineering methods are applied to interpret each of the obtained clusters. The approach was validated using data from two different real-world data sets provided by a generation company and a distribution system operator. The results highlight the advantages of the proposed approach and outperformed engineering methods (from IEC and IEEE standards) and companies legacy method. The approach was also validated on the public IEC TC10 database, showing the capability to achieve comparable accuracy with supervised learning methods from the literature. As a result of the methodology performance, both companies are currently using it in their daily DGA diagnosis.
2022
Autores
Neves Moreira, F; Almada Lobo, B; Guimaraes, L; Amorim, P;
Publicação
TRANSPORTATION RESEARCH PART E-LOGISTICS AND TRANSPORTATION REVIEW
Abstract
In this paper, we explore the value of considering simultaneous pickups and deliveries inmulti-product inventory-routing problems both with deterministic and uncertain demand. Wepropose a multi-commodity, develop an exact branch-and-cut algorithm with patching heuristicsto efficiently tackle this problem, and provide insightful analyses based on optimal plans. Thesimplicity of the proposed approach is an important aspect, as it facilitates its usage in practice,opposed to complicated stochastic or probabilistic methods. The computational experimentssuggest that in the deterministic demand setting, pickups are mainly used to balance initialinventories, achieving an average total cost reduction of 1.1%, while transshipping 2.4% oftotal demand. Under uncertain demand, pickups are used extensively, achieving cost savings of up to 6.5% in specific settings. Overall, our sensitivity analysis shows that high inventory costsand high degrees of demand uncertainty drive the usage of pickups, which, counter-intuitively, are not desirable in every case
2025
Autores
Rocco, CD; Guimaraes, L; Almada Lobo, B; Morabito, R;
Publicação
INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH
Abstract
This paper presents an optimisation approach based on mixed-integer programming for tactical planning decisions within fresh fruit processing industries. It applies to fruits such as oranges, tomatoes, guavas and others, where diluted fruit juice needs to be concentrated in evaporators to produce semi-finished or finished products. It considers agricultural and industrial activities, integrating them to address complex and interconnected decisions. Agricultural tasks include planting, harvesting, and transporting fruits from fields to processing plants, while industrial activities involve the production, inventory, and transportation of semi-finished and final products. This approach accommodates multiple agricultural regions, fruit varieties, processing plants, and products, operating on a weekly basis within a one-year planning horizon. It offers a detailed solution for harvesting, the fruit juice concentration process, inventory management for the products produced, and transportation of raw materials and products among processing plants. Production of semi-finished products is modelled using the Proportional Lot-Sizing and Scheduling Problem and the production of finished products is modelled adopting a blending lot-sizing problem. The results were validated through computational experiments using a dataset from a company that processes tomatoes and guavas. Scenario analyses were conducted to evaluate the solution's consistency and real-world applicability. The findings indicate that the approach can support decision making in practice, highlighting its potential as a valuable managerial, analytical, and optimisation tool for some agri-food industries.
2025
Autores
Marques, N; Figueira, G; Guimaraes, L;
Publicação
COMPUTERS & INDUSTRIAL ENGINEERING
Abstract
Uncertainty is pervasive in modern manufacturing settings. In order to cope with unexpected events, scheduling decisions are commonly taken resorting to dispatching rules, which are reactive in nature. However, rule performance varies according to shop utilisation and due date allowance, which often change in dynamic real-world job shops. Therefore, this paper explores systems that select dispatching rules as conditions change over time, namely periodic and real-time dispatching rule selection systems, which are based on supervised learning and reinforcement learning algorithms, respectively. These types of systems have been proposed in the past but have been further improved in this work by carefully selecting the most relevant state features and dispatching rules. Moreover, by testing both approaches on the same instances, it was possible to compare them and determine the most advantageous one. After the tests, which included a wide array of job shop instances, both periodic and real-time systems outperformed state-of-the-art dispatching rules by over 10% tardiness-wise. Nonetheless, the periodic rule selection approach was more robust across all tests than the real-time approach. These results demonstrate that there is a real incentive for managers to adopt dispatching rule selection systems.
2025
Autores
Oliveira, MA; Guimaraes, L; Borges, JL; Almada Lobo, B;
Publicação
INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH
Abstract
Ensuring process quality in modern manufacturing is increasingly challenging due to the complexity of production processes and reliance on skilled operators, which can lead to suboptimal solutions and poor quality. To address these challenges, we introduce a novel, unsupervised, robust, nonparametric control chart for Phase II monitoring. This chart tracks the degradation of a quality characteristic using a condition index that captures mean and scale shifts without relying on assumptions, offering high flexibility and adaptability. Comparative studies with state-of-the-art nonparametric schemes demonstrate faster detection capabilities and competitive accuracy across various scenarios. We validate our approach through its application in the glass container production process, showcasing its effectiveness in monitoring multiple defective rates. Although tested on defective rates, the methodology is adaptable to any quantifiable quality characteristic.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.