2009
Autores
Almeida, C; Franco, T; Ferreira, H; Martins, A; Santos, R; Almeida, JM; Carvalho, J; Silva, E;
Publicação
OCEANS 2009 - EUROPE, VOLS 1 AND 2
Abstract
This work presents the integration of obstacle detection and analysis capabilities in a coherent and advanced C&C framework allowing mixed-mode control in unmanned surface systems. The collision avoidance work has been successfully integrated in an operational autonomous surface vehicle and demonstrated in real operational conditions. We present the collision avoidance system, the ROAZ autonomous surface vehicle and the results obtained at sea tests. Limitations of current COTS radar systems are also discussed and further research directions are proposed towards the development and integration of advanced collision avoidance systems taking in account the different requirements in unmanned surface vehicles
2009
Autores
Ferreira, H; Almeida, C; Martins, A; Almeida, J; Dias, N; Dias, A; Silva, E;
Publicação
OCEANS 2009 - EUROPE, VOLS 1 AND 2
Abstract
The use of unmanned marine robotic vehicles in bathymetric surveys is discussed. This paper presents recent results in autonomous bathymetric missions with the ROAZ autonomous surface vehicle. In particular, robotic surface vehicles such as ROAZ provide an efficient tool in risk assessment for shallow water environments and water land interface zones as the near surf zone in marine coast. ROAZ is an ocean capable catamaran for distinct oceanographic missions, and with the goal to fill the gap were other hydrographic surveys vehicles/systems are not compiled to operate, like very shallow water rivers and marine coastline surf zones. Therefore, the use of robotic systems for risk assessment is validated through several missions performed either in river scenario (in a very shallow water conditions) and in marine coastlines.
2023
Autores
Dias, N; Amaral, G; Almeida, C; Ferreira, A; Camilo, A; Silva, E; Barbosa, S;
Publicação
Abstract
2023
Autores
Barbosa, S; Dias, N; Almeida, C; Silva, G; Ferreira, A; Camilo, A; Silva, E;
Publicação
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES
Abstract
Gamma radiation over the Atlantic Ocean was measured continuously from January to May 2020 by a NaI(Tl) detector installed on board the Portuguese navy's ship NRP Sagres. Enhancements in the gamma radiation values are identified automatically by an algorithm for detection of anomalies in mean and variance as well as by visual inspection. The anomalies are typically +50% above the background level and relatively rare events (similar to<10% of the days). All the detected anomalies are associated with simultaneous precipitation events, consistent with the wet deposition of scavenged radionuclides. The enhancements are detected in the open ocean even at large distances (+500 km) from the nearest coastline. Back trajectories reveal that half of these events are associated with air masses experiencing continental land influences, but the other half do not display evidence of recent land contact. The enhancements in gamma radiation very far from land and with no evidence of continental fetch from back trajectories are difficult to explain as resulting only from radionuclides with a terrestrial source such as radon and its progeny. Further investigation and additional measurements are needed to improve understanding on the sources of ambient radioactivity in the open ocean and assess whether gamma radiation in the marine environment is influenced not only by radionuclides of terrestrial origin, but also cosmogenic radionuclides, like Beryllium-7, formed in the upper atmosphere but with the ability to be transported downward and serve as a tracer of the aerosols to which it attaches. Plain Language Summary Radioactive elements such as the noble gas radon and those produced by its radioactive decay are naturally present in the environment and used as tracers of atmospheric transport and composition. In particular, the noble gas radon, being inert and of predominantly terrestrial origin, is used to identify pristine marine air masses with no land contamination. Precipitation over land typically brings radon from the atmosphere to the surface, enhancing gamma radiation on the ground, but such enhancements have not been identified before nor expected over the ocean due to the low amount of radon typical of marine air masses. Here we report, for the first time, gamma radiation enhancements associated with precipitation in the oceanic environment, using measurements performed over the Atlantic Ocean in a campaign onboard the Portuguese navy ship NRP Sagres.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.