2025
Autores
Jakobs, M; Veloso, B; Gama, J;
Publicação
CoRR
Abstract
2024
Autores
Caroprese, L; Pisani, F; Veloso, BM; Konig, M; Manco, G; Hoos, H; Gama, J;
Publicação
ACM Transactions on Recommender Systems
Abstract
2024
Autores
Méndez, SG; Leal, F; Malheiro, B; Burguillo Rial, JC; Veloso, B; Chis, AE; Vélez, HG;
Publicação
CoRR
Abstract
2025
Autores
Zafra, A; Veloso, B; Gama, J;
Publicação
HYBRID ARTIFICIAL INTELLIGENT SYSTEM, PT I, HAIS 2024
Abstract
Early identification of failures is a critical task in predictive maintenance, preventing potential problems before they manifest and resulting in substantial time and cost savings for industries. We propose an approach that predicts failures in the near future. First, a deep learning model combining long short-term memory and convolutional neural network architectures predicts signals for a future time horizon using real-time data. In the second step, an autoencoder based on convolutional neural networks detects anomalies in these predicted signals. Finally, a verification step ensures that a fault is considered reliable only if it is corroborated by anomalies in multiple signals simultaneously. We validate our approach using publicly available Air Production Unit (APU) data from Porto metro trains. Two significant conclusions emerge from our study. Firstly, experimental results confirm the effectiveness of our approach, demonstrating a high fault detection rate and a reduced number of false positives. Secondly, the adaptability of this proposal allows for the customization of configuration of different time horizons and relationship between the signals to meet specific detection requirements.
2024
Autores
Molina, M; Veloso, B; Ferreira, CA; Ribeiro, RP; Gama, J;
Publicação
ECAI 2024
Abstract
Image segmentation for detecting illegal landfill waste in aerial images is essential for environmental crime monitoring. Despite advancements in segmentation models, the primary challenge in this domain is the lack of annotated data due to the unknown locations of illegal waste disposals. This work mainly focuses on evaluating segmentation models for identifying individual illegal landfill waste segments using limited annotations. This research seeks to lay the groundwork for a comprehensive model evaluation to contribute to environmental crime monitoring and sustainability efforts by proposing to harness the combination of agnostic segmentation and supervised classification approaches. We mainly explore different metrics and combinations to better understand how to measure the quality of this applied segmentation problem.
2024
Autores
Alcoforado, A; Ferraz, TP; Bustos, E; Oliveira, AS; Gerber, R; Santoro, GLDM; Fama, IC; Veloso, BM; Siqueira, FL; Costa, AHR;
Publicação
Estudos Avancados
Abstract
One of the principles of digital democracy is to actively inform citizens and mobilize them to participate in the political debate. This paper introduces a tool that processes public political documents to make information accessible to citizens and specific professional groups. In particular, we investigate and develop artificial intelligence techniques for text mining from the Portuguese Diário da Assembleia da República to partition, analyze, extract and synthesize information contained in the minutes of parliamentary sessions. We also developed dashboards to show the extracted information in a simple and visual way, such as summaries of speeches and topics discussed. Our main objective is to increase transparency and accountability between elected officials and voters, rather than characterizing political behavior. © (2024), (SciELO-Scientific Electronic Library Online). All Rights Reserved.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.