2024
Autores
Ferreira, TD; Guerreiro, A; Silva, NA;
Publicação
NONLINEAR OPTICS AND ITS APPLICATIONS 2024
Abstract
Exploring optical analogues with paraxial fluids of light has been a subject of great interest over the past years. Despite many optical analogues having been created and explored with these systems, they have some limitations that usually hinder the observation of the desired dynamics. Since these systems map the effective time onto the propagation direction, the fixed size of the nonlinear media limits the experimental effective time, and only the output state is accessible. In this work, we present a solution to overcome these problems in the form of an optical feedback loop, which consists of reconstructing the output state, by using the off-axis digital holography technique, and then re-injecting it again at the entrance of the medium through the utilization of Spatial Light Modulators. This technique enables access to intermediate states and an extension of the system effective time. Furthermore, the total control of the amplitude and phase of the beam at the input of the medium, also allows us to explore more exotic configurations that may be interesting in the context of optical analogues, that otherwise would be hard to create. To demonstrate the capabilities of the setup, we explore qualitatively some case studies, such as the dark soliton decay into vortices with the propagation of shock waves, and the collision dynamics between three flat-top states. The results presented in this work pave the way for probing new dynamics with paraxial fluids of light.
2024
Autores
Monteiro, CS; Perez-Herrera, RA; Silva, NA; Silva, SO; Frazao, O;
Publicação
FIBER LASERS AND GLASS PHOTONICS: MATERIALS THROUGH APPLICATIONS IV
Abstract
The generation of short pulses in fiber lasers using saturable absorbers made of graphene oxide (GO), focusing on film thickness, was studied and optimized. The saturable absorber comprised a GO thin film deposited onto a single-mode fiber using the spray coating technique. Water-dispersed GO with a concentration of 4 mg/mL, characterized by a high proportion of monolayer flakes, was employed. This thin film was integrated into a cavity ring laser featuring an erbium-doped fiber amplifier (EDFA), resulting in a fiber laser emitting at a central emission wavelength of approximately 1564 nm and having a total cavity length of approximately 120 m. By controlling intracavity polarization, short-pulsed light was generated through mode-locking, Q switching, or a combination of both regimes. This work presents a comprehensive characterization of the cavity ring laser operating under the mode-locking regime. It encompasses an analysis of the spectral behavior, focusing on the evolution of the Kelly's sidebands with increasing pump power, as well as an assessment of its temporal stability. Moreover, the effects of the aging of the saturable absorber material were studied after a time period of 6 months after the fabrication. It was observed that the general characteristics of spectral signal of the laser were maintained, with long-term stability .
2024
Autores
Jorge, P; Teixeira, J; Rocha, V; Ribeiro, J; Silva, N;
Publicação
BIOPHOTONICS IN POINT-OF-CARE III
Abstract
Sensing at the single cell level can provide insights into its dynamics and heterogeneity, yielding information otherwise unattainable with traditional biological methods where average population behavior is observed. In this context, optical tweezers provide the ability to select, separate, manipulate and identify single cells or other types of microparticles, potentially enabling single cell diagnostics. Forward or backscatter analysis of the light interacting with the trapped cells can provide valuable insights on the cell optical, geometrical and mechanical properties. In particular, the combination of tweezers systems with advanced machine learning algorithms can enable single cell identification capabilities. However, typical processing pipelines require a training stage which often struggles when trying to generalize to new sets of data. In this context, fully automated tweezers system can provide mechanisms to obtain much larger datasets with minimum effort form the users, while eliminating procedural variability. In this work, a pipeline for full automation of optical tweezers systems is discussed. A performance comparison between manually operated and fully automated tweezers systems is presented, clearly showing advantages of the latter. A case study demonstrating the ability of the system to discriminate molecular binding events on microparticles is presented.
2024
Autores
Capela, D; Lopesa, T; Ferreira, MFS; Magalhaes, P; Jorge, PAS; Silva, NA; Guimaraes, D;
Publicação
OPTICAL SENSING AND DETECTION VIII
Abstract
Circular economy policies and recycling play a pivotal role in fostering sustainable models for the wood industry capable of reducing the environmental impact of our consumption patterns. The production of Particleboard is a good example of industry that uses high quantities of recycled wood. However, it poses risks since wood often have contaminants that compromise compliance of safety standards. Thus, it is necessary to develop methodologies for rapid analysis of chemical contaminants in wood wastes that allow easy detection of these elements. In this work, the capability of Laser-induced breakdown spectroscopy (LIBS) to detect a set of heavy metals in wood samples was explored. Some advantages of this technique, such as portability, minimal to no sample preparation, and quick analysis are characteristics that make this method one of the most suitable for this purpose of analysis. In the majority of cases, the contamination comes from the pigments used in paints, varnishes, or coatings. Titanium (Ti) e.g. is a common element in white pigments and Chromium (Cr) in red and green pigments. To ensure the presence or absence of Cr and Ti, a set of 3 lines was analysed. The results revealed the presence of these elements and that 30% of the samples seem to be highly contaminated. The LIBS technique proved to be a powerful methodogy for decision-making purposes.
2024
Autores
Ferreira, MFS; Oliveira, R; Capela, D; Lopes, T; Marrafa, J; Meneses, P; Oliveira, A; Baptista, C; Gomes, T; Moutinho, S; Coelho, J; da Silva, RN; Guimaraes, D; Silva, NA; Jorge, PAD;
Publicação
OPTICAL SENSING AND DETECTION VIII
Abstract
The application of surface treatments to cork stoppers is presently a common practice in the wine industry, designed to achieve maximum performance and optimal costumer experience of premium products. Unfortunately, current coating techniques lack efficient process control tools, often resulting in faulty products being detected too late, already in use, compromising performance, product quality and mining consumer confidence. In this work a fully automated system equipped with machine vision and automatic feeding of corks, was coupled with an imaging LIBS setup and used to perform a benchmarking against conventional quality control methods. Results clearly demonstrate the capability of the new LIBS system to effectively evaluate in real time the quality of silicone-based surface coatings in cork stoppers, effectively working as a tool for process control providing a route for effective optimization.
2024
Autores
Guimaraes, D; Capela, D; Lones, T; Magalhaes, P; Pessanha, S; Jorge, PAS; Silva, NA;
Publicação
2024 IEEE SENSORS APPLICATIONS SYMPOSIUM, SAS 2024
Abstract
Recycling of post-consumer wood waste into wood-based panels may be hindered by the presence of physical and chemical impurities in the waste stream. Therefore greater attention should be given to assessing the quality of wood waste and in particular to heavy metals contamination. One of the elements that poses concern is Chromium (Cr). Cr compounds can be toxic, particularly hexavalent chromium (Cr(VI)), which is a known human carcinogen. Hence, screening for Cr in wood waste plays a pivotal role in enhancing recycling facility operations and mitigating contamination before final product incorporation. In this study, a Laser-Induced Breakdown Spectroscopy (LIBS) methodology was optimized for screening wood waste for Cr and validated by X-ray Fluorescence (XRF) measurements. LIBS spectral complexity and sample matrix effects challenges were addressed through careful selection of Cr lines and tailored data analysis algorithms. The results showed that LIBS imaging successfully provided a straightforward timely output revealing the contaminated wood samples, crucial for quick decision-making in production lines.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.