2025
Autores
Pereira, J; Mota, A; Couto, P; Valente, A; Serôdio, C;
Publicação
APPLIED SCIENCES-BASEL
Abstract
Ensuring food quality and safety is a growing challenge in the food industry, where early detection of contamination or spoilage is crucial. Using gas sensors combined with Artificial Intelligence (AI) offers an innovative and effective approach to food identification, improving quality control and minimizing health risks. This study aims to evaluate food identification strategies using supervised learning techniques applied to data collected by the BME Development Kit, equipped with the BME688 sensor. The dataset includes measurements of temperature, pressure, humidity, and, particularly, gas composition, ensuring a comprehensive analysis of food characteristics. The methodology explores two strategies: a neural network model trained using Bosch BME AI-Studio software, and a more flexible, customizable approach that applies multiple predictive algorithms, including DT, LR, kNN, NB, and SVM. The experiments were conducted to analyze the effectiveness of both approaches in classifying different food samples based on gas emissions and environmental conditions. The results demonstrate that combining electronic noses (E-Noses) with machine learning (ML) provides high accuracy in food identification. While the neural network model from Bosch follows a structured and optimized learning approach, the second methodology enables a more adaptable exploration of various algorithms, offering greater interpretability and customization. Both approaches yielded high predictive performance, with strong classification accuracy across multiple food samples. However, performance variations depend on the characteristics of the dataset and the algorithm selection. A critical analysis suggests that optimizing sensor calibration, feature selection, and consideration of environmental parameters can further enhance accuracy. This study confirms the relevance of AI-driven gas analysis as a promising tool for food quality assessment.
2025
Autores
Orsolits, H; Valente, A; Lackner, M;
Publicação
APPLIED SCIENCES-BASEL
Abstract
This paper examines a series of bachelor's and master's thesis projects from the supervisor's perspective, focusing on how Augmented Reality (AR) and Mixed Reality (MR) can enhance industrial robotics engineering education. While industrial robotics systems continue to evolve and the need for skilled robotics engineers grows, teaching methods have not changed. Mostly, higher education in robotics engineering still relies on funding industrial robots or otherwise on traditional 2D tools that do not effectively represent the complex spatial interactions involved in robotics. This study presents a comparative analysis of seven thesis projects integrating MR technologies to address these challenges. All projects were supervised by the lead author and showcase different approaches and learning outcomes, building on insights from previous work. This comparison outlines the benefits and challenges of using MR for robotics engineering education. Additionally, it shares key takeaways from a supervisory standpoint as an evolutionary process, offering practical insights for fellow educators/supervisors guiding MR-based robotics education projects.
2025
Autores
Mota, A; Serôdio, C; Briga Sá, A; Valente, A;
Publicação
INTERNET OF THINGS
Abstract
Humans spend most of their time indoors, where air quality and comfort are crucial to health and well-being. Elevated CO2 levels in buildings can reduce cognitive function, discomfort, and health issues. Indoor CO2 monitoring has emerged as a key focus in the literature, particularly in residential buildings, as it can play a vital role in helping to maintain adequate ventilation rates. The growing smart home market demands seamless integration and control, which are essential for implementing IAQ sensing devices. However, interoperability barriers between platforms and devices continue to hinder smart home adoption. To address these challenges, Matter protocol is starting to appear in the market. In this work, a wireless CO2 sensor is developed based on ESP32-C6 and SCD40 and integrated into a created Matter-enabled ecosystem formed with the Home Assistant open-source platform. The utilized hardware and software enable the usage of two different wireless communication technologies, WiFi and Thread, enhancing compatibility. The study highlights the rapid and seamless onboarding of the developed CO2 monitoring device into smart home ecosystems using the Matter protocol. As a result, once the device is successfully added to the ecosystem, the measurements can be accessed and analyzed through a mobile application, forming an IoT environment.
2025
Autores
Luiz, LE; Soares, S; Valente, A; Barroso, J; Leitao, P; Teixeira, JP;
Publicação
COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL
Abstract
Problem: Portable ECG/sEMG acquisition systems for telemedicine often lack application flexibility (e.g., limited configurability, signal validation) and efficient wireless data handling. Methodology: A modular biosignal acquisition system with up to 8 channels, 24-bit resolution and configurable sampling (1-4 kHz) is proposed, featuring per-channel gain/source adjustments, internal MUX-based reference drive, and visual electrode integrity monitoring; Bluetooth (R) transmits data via a bit-wise packet structure (83.92% smaller than JSON, 7.28 times faster decoding with linear complexity based on input size). Results: maximum 6.7 mu V-rms input-referred noise; harmonic signal correlations >99.99%, worst-case THD of -53.03 dBc, and pulse wave correlation >99.68% in frequency-domain with maximum NMSE% of 6e-6%; and 22.3-hour operation (3.3 Ah battery @ 150 mA). Conclusion: The system enables high-fidelity, power-efficient acquisition with validated signal integrity and adaptable multi-channel acquisition, addressing gaps in portable biosensing.
2025
Autores
Chellal, AA; Braun, J; Lima, J; Goncalves, J; Valente, A; Costa, P;
Publicação
2025 IEEE INTERNATIONAL CONFERENCE ON AUTONOMOUS ROBOT SYSTEMS AND COMPETITIONS, ICARSC
Abstract
Mecanum wheeled mobile robots have become relevant due to their excellent maneuverability, enabling omnidirectional motion in constrained environments as a requirement in industrial automation, logistics, and service robotics. This paper addresses a low-level controller based on the H-Infinity (H-infinity) control method for a four-wheel Mecanum mobile robot. The proposed controller ensures stability and performance despite model uncertainties and external disturbances. The dynamic model of the robot was developed and introduced in MATLAB to generate the controller. Further, the controller's performance is validated and compared to a traditional PID controller using the SimTwo simulator, a realistic physics-based simulator with dynamics of rigid bodies incorporating non-linearities such as motor dynamics and friction effects. The preliminary simulation results show that the H-infinity reached a time-independent Euclidean error of 0.0091 m, compared to 0.0154 m error for the PID in trajectory tracking. Demonstrating that the H-infinity controller handles nonlinear dynamics and disturbances, ensuring precise trajectory tracking and improved system performance. This research validates the proposed approach for advanced control of Mecanum wheeled robots.
2025
Autores
Benhanifia, A; Ben Cheikh, Z; Oliveira, PM; Valente, A; Lima, J;
Publicação
INTELLIGENT SYSTEMS WITH APPLICATIONS
Abstract
Predictive maintenance (PDM) is emerging as a strong transformative tool within Industry 4.0, enabling significant improvements in the sustainability and efficiency of manufacturing processes. This in-depth literature review, which follows the PRISMA 2020 framework, examines how PDM is being implemented in several areas of the manufacturing industry, focusing on how it is taking advantage of technological advances such as artificial intelligence (AI) and the Internet of Things (IoT). The presented in-depth evaluation of the technological principles, implementation methods, economic consequences, and operational improvements based on academic and industrial sources and new innovations is performed. According to the studies, integrating CDM can significantly increase machine uptime and reliability while reducing maintenance costs. In addition, the transition to PDM systems that use real-time data to predict faults and plan maintenance more accurately holds out promising prospects. However, there are still gaps in the overall methodologies for measuring the return on investment of PDM implementations, suggesting an essential research direction.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.