Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por Paulo Moura Oliveira

2023

Pocket Labs as a STEM Learning Tool and for Engineering Motivation

Autores
Cardoso, A; Oliveira, PM; Sa, J;

Publicação
LEARNING IN THE AGE OF DIGITAL AND GREEN TRANSITION, ICL2022, VOL 1

Abstract
Teaching and learning are processes that must accompany the digital transition, which is one of the biggest challenges we currently face, along with the green transition. The digital transition in education is a process with several challenges that must count on the involvement and collaboration of all stakeholders, contributing to the schools of the future. For this, technology plays a decisive role, and must be integrated into classes as a relevant tool to develop and implement different types of experiments, motivating the students towards STEM areas. In this context, a project financed by IFAC made it possible to use pocket laboratories in different high schools, encouraging teachers to prepare activities supported by this equipment, stimulating students to be interested in engineering topics. This article presents the approach followed in one high school and discusses the results obtained, highlighting the usefulness and opportunity of using pocket labs, and low-cost equipment in general, in school activities, which can promote the STEM areas and, in particular, the engineering courses.

2023

Ant-Balanced Multiple Traveling Salesmen: ACO-BmTSP

Autores
Pereira, SD; Pires, EJS; Oliveira, PBD;

Publicação
ALGORITHMS

Abstract
A new algorithm based on the ant colony optimization (ACO) method for the multiple traveling salesman problem (mTSP) is presented and defined as ACO-BmTSP. This paper addresses the problem of solving the mTSP while considering several salesmen and keeping both the total travel cost at the minimum and the tours balanced. Eleven different problems with several variants were analyzed to validate the method. The 20 variants considered three to twenty salesmen regarding 11 to 783 cities. The results were compared with best-known solutions (BKSs) in the literature. Computational experiments showed that a total of eight final results were better than those of the BKSs, and the others were quite promising, showing that with few adaptations, it will be possible to obtain better results than those of the BKSs. Although the ACO metaheuristic does not guarantee that the best solution will be found, it is essential in problems with non-deterministic polynomial time complexity resolution or when used as an initial bound solution in an integer programming formulation. Computational experiments on a wide range of benchmark problems within an acceptable time limit showed that compared with four existing algorithms, the proposed algorithm presented better results for several problems than the other algorithms did.

2023

Deep Learning YOLO-Based Solution for Grape Bunch Detection and Assessment of Biophysical Lesions

Autores
Pinheiro, I; Moreira, G; da Silva, DQ; Magalhaes, S; Valente, A; Oliveira, PM; Cunha, M; Santos, F;

Publicação
AGRONOMY-BASEL

Abstract
The world wine sector is a multi-billion dollar industry with a wide range of economic activities. Therefore, it becomes crucial to monitor the grapevine because it allows a more accurate estimation of the yield and ensures a high-quality end product. The most common way of monitoring the grapevine is through the leaves (preventive way) since the leaves first manifest biophysical lesions. However, this does not exclude the possibility of biophysical lesions manifesting in the grape berries. Thus, this work presents three pre-trained YOLO models (YOLOv5x6, YOLOv7-E6E, and YOLOR-CSP-X) to detect and classify grape bunches as healthy or damaged by the number of berries with biophysical lesions. Two datasets were created and made publicly available with original images and manual annotations to identify the complexity between detection (bunches) and classification (healthy or damaged) tasks. The datasets use the same 10,010 images with different classes. The Grapevine Bunch Detection Dataset uses the Bunch class, and The Grapevine Bunch Condition Detection Dataset uses the OptimalBunch and DamagedBunch classes. Regarding the three models trained for grape bunches detection, they obtained promising results, highlighting YOLOv7 with 77% of mAP and 94% of the F1-score. In the case of the task of detection and identification of the state of grape bunches, the three models obtained similar results, with YOLOv5 achieving the best ones with an mAP of 72% and an F1-score of 92%.

  • 33
  • 33