Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por Nuno Feixa Rodrigues

2007

Higher-order lazy functional slicing

Autores
Rodrigues, NF; Barbosa, LS;

Publicação
JOURNAL OF UNIVERSAL COMPUTER SCIENCE

Abstract
Program slicing is a well known family of techniques intended to identify and isolate code fragments which depend on, or are depended upon, specific program entities. This is particularly useful in the areas of reverse engineering, program understanding, testing and software maintenance. Most slicing methods, and corresponding tools, target either the imperative or the object oriented paradigms, where program slices are computed with respect to a variable or a program statement. Taking a complementary point of view, this paper focuses on the slicing of higher-order functional programs under a lazy evaluation strategy. A prototype of a Haskell slicer, built as proof-of-concept for these ideas, is also introduced.

2006

Program slicing by calculation

Autores
Rodrigues, NF; Barbosa, LS;

Publicação
JOURNAL OF UNIVERSAL COMPUTER SCIENCE

Abstract
Program slicing is a well known family of techniques used to identify code fragments which depend on or are depended upon specific program entities. They are particularly useful in the areas of reverse engineering, program understanding, testing and software maintenance. Most slicing methods, usually oriented towards the imperative or object paradigms, are based on some sort of graph structure representing program dependencies. Slicing techniques amount, therefore, to ( sophisticated) graph transversal algorithms. This paper proposes a completely different approach to the slicing problem for functional programs. Instead of extracting program information to build an underlying dependencies' structure, we resort to standard program calculation strategies, based on the so-called Bird-Meertens formalism. The slicing criterion is specified either as a projection or a hiding function which, once composed with the original program, leads to the identification of the intended slice. Going through a number of examples, the paper suggests this approach may be an interesting, even if not completely general, alternative to slicing functional programs.

2016

Kidney Segmentation in 3D CT Images Using B-Spline Explicit Active Surfaces

Autores
Torres, HR; Oliveira, B; Queiros, S; Morais, P; Fonseca, JC; D'hooge, J; Rodrigues, NF; Vilaca, JL;

Publicação
2016 IEEE INTERNATIONAL CONFERENCE ON SERIOUS GAMES AND APPLICATIONS FOR HEALTH

Abstract
In this manuscript, we propose to adapt the B-Spline Explicit Active Surfaces (BEAS) framework for semi-automatic kidney segmentation in computed tomography (CT) images. To study the best energy functional for kidney CT extraction, three different localized region-based energies were implemented within the BEAS framework, namely localized Chan-Vese, localized Yezzi, and signed localized Yezzi energies. Moreover, a novel gradient-based regularization term is proposed. The method was applied on 18 kidneys from 9 CT datasets, with different image properties. Several energy combinations were contrasted using surface-based comparison against ground truth meshes, assessing their accuracy and robustness against surface initialization. Overall, the hybrid energy functional combining the localized signed Yezzi energy with gradient-based regularization simultaneously showed the highest accuracy and the lowest sensitivity to the initialization. Volumetric analysis demonstrated the feasibility of the method from a clinical point of view, with similar reproducibility to manual observers.

2016

Assessment of Laparoscopic Skills Performance: 2D Versus 3D Vision and Classic Instrument Versus New Hand-Held Robotic Device for Laparoscopy

Autores
Leite, M; Carvalho, AF; Costa, P; Pereira, R; Moreira, A; Rodrigues, N; Laureano, S; Correia Pinto, J; Vilaca, JL; Leao, P;

Publicação
SURGICAL INNOVATION

Abstract
Introduction and Objectives. Laparoscopic surgery has undeniable advantages, such as reduced postoperative pain, smaller incisions, and faster recovery. However, to improve surgeons' performance, ergonomic adaptations of the laparoscopic instruments and introduction of robotic technology are needed. The aim of this study was to ascertain the influence of a new hand-held robotic device for laparoscopy (HHRDL) and 3D vision on laparoscopic skills performance of 2 different groups, naive and expert. Materials and Methods. Each participant performed 3 laparoscopic tasksPeg transfer, Wire chaser, Knotin 4 different ways. With random sequencing we assigned the execution order of the tasks based on the first type of visualization and laparoscopic instrument. Time to complete each laparoscopic task was recorded and analyzed with one-way analysis of variance. Results. Eleven experts and 15 naive participants were included. Three-dimensional video helps the naive group to get better performance in Peg transfer, Wire chaser 2 hands, and Knot; the new device improved the execution of all laparoscopic tasks (P < .05). For expert group, the 3D video system benefited them in Peg transfer and Wire chaser 1 hand, and the robotic device in Peg transfer, Wire chaser 1 hand, and Wire chaser 2 hands (P < .05). Conclusion. The HHRDL helps the execution of difficult laparoscopic tasks, such as Knot, in the naive group. Three-dimensional vision makes the laparoscopic performance of the participants without laparoscopic experience easier, unlike those with experience in laparoscopic procedures.

2016

Dense motion field estimation from myocardial boundary displacements

Autores
Morais, P; Queiros, S; Ferreira, A; Rodrigues, NF; Baptista, MJ; D'hooge, J; Vilaca, JL; Barbosa, D;

Publicação
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING

Abstract
Minimally invasive cardiovascular interventions guided by multiple imaging modalities are rapidly gaining clinical acceptance for the treatment of several cardiovascular diseases. These images are typically fused with richly detailed pre-operative scans through registration techniques, enhancing the intra-operative clinical data and easing the image-guided procedures. Nonetheless, rigid models have been used to align the different modalities, not taking into account the anatomical variations of the cardiac muscle throughout the cardiac cycle. In the current study, we present a novel strategy to compensate the beat-to-beat physiological adaptation of the myocardium. Hereto, we intend to prove that a complete myocardial motion field can be quickly recovered from the displacement field at the myocardial boundaries, therefore being an efficient strategy to locally deform the cardiac muscle. We address this hypothesis by comparing three different strategies to recover a dense myocardial motion field from a sparse one, namely, a diffusion-based approach, thin-plate splines, and multiquadric radial basis functions. Two experimental setups were used to validate the proposed strategy. First, an in silico validation was carried out on synthetic motion fields obtained from two realistic simulated ultrasound sequences. Then, 45 mid-ventricular 2D sequences of cine magnetic resonance imaging were processed to further evaluate the different approaches. The results showed that accurate boundary tracking combined with dense myocardial recovery via interpolation/diffusion is a potentially viable solution to speed up dense myocardial motion field estimation and, consequently, to deform/compensate the myocardial wall throughout the cardiac cycle. Copyright (C) 2015 John Wiley & Sons, Ltd.

2016

A proof of concept of an augmented reality system for nuss surgery

Autores
Ferreira, A; Morais, P; Queirós, S; Veloso, F; Rodrigues, NF; Correira Pinto, J; Vilaça, JL;

Publicação
Computational Vision and Medical Image Processing V - Proceedings of 5th Eccomas Thematic Conference on Computational Vision and Medical Image Processing, VipIMAGE 2015

Abstract
Pectus Excavatum (PE) is the most common congenital chest wall deformity, affecting 1 in 400 live births. This deformity is commonly corrected using the minimally invasive Nuss procedure, where a bar is positioned under the sternum. Although recent procedure advances based on patientspecific prosthesis were proposed, correct bar placement is still challenging. In this work, we propose a novel augmented reality system to guide the surgeon during PE bar placement. This system combines a 3D sensor with a projector to superimpose the thoracic ribs cage on the chest wall of the patient, thus indicating the optimal insertion and bar placement points. This system was validated in three different scenarios: 1) simulated chest surface models; 2) 3D printed phantom; and 3) 3D commercial thoracic phantom. An error of 3.93 ± 3.44 mm, and 3.08 ± 1.57 mm were obtained in the first and second experiments, respectively. In the final experiment, visual assessment of the result proved that a high similarity was obtained between the projected model and the real ribs cage position. Overall, the proposed system showed high feasibility with low error, proving that 3D projection of the ribs on the patient’s chest wall may facilitate PE bar insertion and ultimately provide useful information to guide Nuss procedure. © 2016 Taylor & Francis Group, London.

  • 14
  • 15