Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por Carlos Baquero

2024

Pondering the Ugly Underbelly, and Whether Images Are Real

Autores
Hill, RK; Baquero, C;

Publicação
Commun. ACM

Abstract
[No abstract available]

2024

Performance and explainability of feature selection-boosted tree-based classifiers for COVID-19 detection

Autores
Rufino, J; Ramírez, JM; Aguilar, J; Baquero, C; Champati, J; Frey, D; Lillo, RE; Fernández Anta, A;

Publicação
HELIYON

Abstract
In this paper, we evaluate the performance and analyze the explainability of machine learning models boosted by feature selection in predicting COVID-19-positive cases from self-reported information. In essence, this work describes a methodology to identify COVID-19 infections that considers the large amount of information collected by the University of Maryland Global COVID-19 Trends and Impact Survey (UMD-CTIS). More precisely, this methodology performs a feature selection stage based on the recursive feature elimination (RFE) method to reduce the number of input variables without compromising detection accuracy. A tree-based supervised machine learning model is then optimized with the selected features to detect COVID-19-active cases. In contrast to previous approaches that use a limited set of selected symptoms, the proposed approach builds the detection engine considering a broad range of features including self-reported symptoms, local community information, vaccination acceptance, and isolation measures, among others. To implement the methodology, three different supervised classifiers were used: random forests (RF), light gradient boosting (LGB), and extreme gradient boosting (XGB). Based on data collected from the UMD-CTIS, we evaluated the detection performance of the methodology for four countries (Brazil, Canada, Japan, and South Africa) and two periods (2020 and 2021). The proposed approach was assessed in terms of various quality metrics: F1-score, sensitivity, specificity, precision, receiver operating characteristic (ROC), and area under the ROC curve (AUC). This work also shows the normalized daily incidence curves obtained by the proposed approach for the four countries. Finally, we perform an explainability analysis using Shapley values and feature importance to determine the relevance of each feature and the corresponding contribution for each country and each country/year.

2023

A Year Embedded in the Crypto-NFT Space

Autores
Baquero, C;

Publicação
COMMUNICATIONS OF THE ACM

Abstract

2023

Consistent comparison of symptom-based methods for COVID-19 infection detection

Autores
Rufino, J; Ramirez, JM; Aguilar, J; Baquero, C; Champati, J; Frey, D; Lillo, RE; Fernandez Anta, A;

Publicação
INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS

Abstract
Background: During the global pandemic crisis, various detection methods of COVID-19-positive cases based on self-reported information were introduced to provide quick diagnosis tools for effectively planning and managing healthcare resources. These methods typically identify positive cases based on a particular combination of symptoms, and they have been evaluated using different datasets.Purpose: This paper presents a comprehensive comparison of various COVID-19 detection methods based on self-reported information using the University of Maryland Global COVID-19 Trends and Impact Survey (UMD-CTIS), a large health surveillance platform, which was launched in partnership with Facebook.Methods: Detection methods were implemented to identify COVID-19-positive cases among UMD-CTIS participants reporting at least one symptom and a recent antigen test result (positive or negative) for six countries and two periods. Multiple detection methods were implemented for three different categories: rule-based approaches, logistic regression techniques, and tree-based machine-learning models. These methods were evaluated using different metrics including F1-score, sensitivity, specificity, and precision. An explainability analysis has also been conducted to compare methods.Results: Fifteen methods were evaluated for six countries and two periods. We identify the best method for each category: rule-based methods (F1-score: 51.48% -71.11%), logistic regression techniques (F1-score: 39.91% -71.13%), and tree-based machine learning models (F1-score: 45.07% -73.72%). According to the explainability analysis, the relevance of the reported symptoms in COVID-19 detection varies between countries and years. However, there are two variables consistently relevant across approaches: stuffy or runny nose, and aches or muscle pain.Conclusions: Regarding the categories of detection methods, evaluating detection methods using homogeneous data across countries and years provides a solid and consistent comparison. An explainability analysis of a tree-based machine-learning model can assist in identifying infected individuals specifically based on their relevant symptoms. This study is limited by the self-report nature of data, which cannot replace clinical diagnosis.

2023

Time-limited Bloom Filter

Autores
Rodrigues, A; Shtul, A; Baquero, C; Almeida, PS;

Publicação
38TH ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING, SAC 2023

Abstract
A Bloom Filter is a probabilistic data structure designed to check, rapidly and memory-efficiently, whether an element is present in a set. It has been vastly used in various computing areas and several variants, allowing deletions, dynamic sets and working with sliding windows, have surfaced over the years. When summarizing data streams, it becomes relevant to identify the more recent elements in the stream. However, most of the sliding window schemes consider the most recent items of a data stream without considering time as a factor. While this allows, e.g., storing the most recent 10000 elements, it does not easily translate into storing elements received in the last 60 seconds, unless the insertion rate is stable and known in advance. In this paper, we present the Time-limited Bloom Filter, a new BF-based approach that can save information of a given time period and correctly identify it as present when queried, while also being able to retire data when it becomes stale. The approach supports variable insertion rates while striving to keep a target false positive rate. We also make available a reference implementation of the data structure as a Redis module.

2023

Probabilistic Causal Contexts for Scalable CRDTs

Autores
Fernandes, PH; Baquero, C;

Publicação
PROCEEDINGS OF THE 10TH WORKSHOP ON PRINCIPLES AND PRACTICE OF CONSISTENCY FOR DISTRIBUTED DATA, PAPOC 2023

Abstract
Conflict-free Replicated Data Types (CRDTs) are useful to allow a distributed system to operate on data even when partitions occur, and thus preserve operational availability. Most CRDTs need to track whether data evolved concurrently at different nodes and needs to be reconciled; this requires storing causality metadata that is proportional to the number of nodes. In this paper, we try to overcome this limitation by introducing a stochastic mechanism that is no longer linear on the number of nodes, but whose accuracy is now tied to how much divergence occurs between synchronizations. This provides a new tool that can be useful in deployments with many anonymous nodes and frequent synchronizations. However, there is an underlying trade-off with classic deterministic solutions, since the approach is now probabilistic and the accuracy depends on the configurable metadata space size.

  • 11
  • 20