2021
Autores
Bernabeu, AM; Plaza Morlote, M; Rey, D; Almeida, M; Dias, A; Mucha, AP;
Publicação
MARINE POLLUTION BULLETIN
Abstract
When an oil spill occurs, a prompt response reduces significantly the impact. The preparedness and contingency plans are essential to identify the most appropriate technologies. Unmanned and autonomous vehicles (UAVs) is emerging as a powerful tool of strategic potential in the observation, oil tracking and damage assessment of an oil spill. The SpilLess project explored the suitability of these devices to be the first-line response to an oil spill. This work analyses the operational requirements related to environmental parameters following a two steps approach: 1) Environmental characterization from long wind and waves time series and modelling; 2) Definition of the optimal periods for operating each UAVs. We have defined the periods in which each of these facilities acts best, confirming that the operational limits of UAVs are not significantly more restrictive than the traditional operations. UAVs should be included in contingency plans as available tools to fight against oil spills.
2019
Autores
Freire, D; Silva, J; Dias, A; Almeida, JM; Martins, A;
Publicação
OCEANS 2019 - MARSEILLE
Abstract
Autonomous Surface Vehicles (ASVs), operating near ship harbors or relatively close to shorelines must be able to steer away from incoming vessels and other possible obstacles, be they dynamic or not. To do this, one must implement some type of multi-target tracking and obstacle avoidance algorithms that lets the vehicle dodge obstacles. This paper presents a radar-based multi-target tracking system developed for obstacle detection in a small unmanned surface vehicle. The system was designed for ROAZ II ASV belonging to INESC TEC/ISEP and implemented in Robot Operating System (ROS) for easier integration with the already existing software.
2021
Autores
Freitas, S; Silva, H; Almeida, C; Viegas, D; Amaral, A; Santos, T; Dias, A; Jorge, PAS; Pham, CK; Moutinho, J; Silva, E;
Publicação
OCEANS 2021: SAN DIEGO - PORTO
Abstract
This work addresses the use of hyperspectral imaging systems for remote detection of marine litter concentrations in oceanic environments. The work consisted on mounting an off-the-shelf hyperspectral imaging system (400-2500 nm) in two aerial platforms: manned and unmanned, and performing data acquisition to develop AI methods capable of detecting marine litter concentrations at the water surface. We performed the campaigns at Porto Pim Bay, Fail Island, Azores, resorting to artificial targets built using marine litter samples. During this work, we also developed a Convolutional Neural Network (CNN-3D), using spatial and spectral information to evaluate deep learning methods to detect marine litter in an automated manner. Results show over 84% overall accuracy (OA) in the detection and classification of the different types of marine litter samples present in the artificial targets.
2022
Autores
Dias, A; Almeida, J; Oliveira, A; Santos, T; Martins, A; Silva, E;
Publicação
2022 OCEANS HAMPTON ROADS
Abstract
Offshore wind turbine application has been widespread in the last years, with an estimation that in 2030 will reach a total capacity of 234GW. Offshore wind farms introduce advantages in terms of environmental impact (noise, impact on birds, disrupted landscapes) and energy production (34% onshore and 43% offshore). Still, they also introduce scientific challenges in developing methodologies that allow wind farm inspection (preventive maintenance) safety for humans. This paper presents a UAV approach for autonomous inspection of inland windturbine and describes the field tests in Penela, Portugal. From the state-of-the-art available wind turbine inspection, in 2015, we carried out the first autonomous inspection with a UAV. The inspection of wind blades offshore is an ongoing project; therefore, the paper also presents the preliminary results with a simulation environment to validate the 3D LiDAR and the inspection procedure with new challenges effects: floating platform, wind gusts, and unknown initial blade position.
2025
Autores
Amaral, G; Martins, JJ; Martins, P; Dias, A; Almeida, J; Silva, E;
Publicação
2025 INTERNATIONAL CONFERENCE ON UNMANNED AIRCRAFT SYSTEMS, ICUAS
Abstract
The knowledge of the precise 3D position of a target in tracking applications is a fundamental requirement. The lack of a low-cost single sensor capable of providing the three-dimensional position (of a target) makes it necessary to use complementary sensors together. This research presents a Local Positioning System (LPS) for outdoor scenarios, based on a data fusion approach for unmodified UAV tracking, combining a vision sensor and mmWave radar. The proposed solution takes advantage of the radar's depth observation ability and the potential of a neural network for image processing. We have evaluated five data association approaches for radar data cluttered to get a reliable set of radar observations. The results demonstrated that the estimated target position is close to an exogenous ground truth obtained from a Visual Inertial Odometry (VIO) algorithm executed onboard the target UAV. Moreover, the developed system's architecture is prepared to be scalable, allowing the addition of other observation stations. It will increase the accuracy of the estimation and extend the actuation area. To the best of our knowledge, this is the first work that uses a mmWave radar combined with a camera and a machine learning algorithm to track a UAV in an outdoor scenario.
2025
Autores
Silva, MF; Dias, A; Guedes, P; Barbosa, R; Estrela, J; Moura, A; Cerqueira, V;
Publicação
2025 IEEE INTERNATIONAL CONFERENCE ON AUTONOMOUS ROBOT SYSTEMS AND COMPETITIONS, ICARSC
Abstract
There is a strong need to motivate students to learn science, technology, engineering, and mathematics (STEM) subjects. This is a problem not only at lower educational levels, but also at college institutions. With this idea in mind, the School of Engineering of the Porto Polytechnic (ISEP) Electrical Engineering Department decided, in 2021, to launch a robotics competition in order to foster students' interest in the areas of robotics and automation. This event, named Robotics@ISEP Open, aims to raise awareness of the area of electronics, computing, and robotics among students, involving them in the use of techniques and tools in this area, and encompasses three distinct robotics competitions covering both manipulator arms and mobile robots. It is based on two main points of interest: (i) robotic competitions and (ii) outside class training in robotics, aimed at students who want support to participate in competitions. Since its first edition, the event has grown and internationalized and has already become a milestone in the academic life of ISEP. This paper presents the motivations that led to the creation of this event, its main organizational aspects, and the competitions that are part of it, as well as some results gathered from the experience accumulated in organizing it.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.