Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por Filipe Neves Santos

2023

A Review on Quadruped Manipulators

Autores
Lopes, MS; Moreira, AP; Silva, MF; Santos, F;

Publicação
PROGRESS IN ARTIFICIAL INTELLIGENCE, EPIA 2023, PT I

Abstract
Quadruped robots are gaining attention in the research community because of their superior mobility and versatility in a wide range of applications. However, they are restricted to procedures that do not need precise object interaction. With the addition of a robotic arm, they can overcome these drawbacks and be used in a new set of tasks. Combining a legged robot's dextrous movement with a robotic arm's maneuverability allows the emergence of a highly flexible system, but with the disadvantage of higher complexity of motion planning and control methods. This paper gives an overview of the existing quadruped systems capable of manipulation, with a particular interest in systems with high movement flexibility. The main topics discussed are the motion planning approaches and the selected kinematic configuration. This review concludes that the most followed research path is to add a robotic arm on the quadrupedal base and that the motion planning approach used depends on the desired application. For simple tasks, the arm can be seen as an independent system, which is simpler to implement. For more complex jobs the coupling effects between the arm and quadruped robot must be considered.

2023

Deep Learning-Based Tree Stem Segmentation for Robotic Eucalyptus Selective Thinning Operations

Autores
da Silva, DQ; Rodrigues, TF; Sousa, AJ; dos Santos, FN; Filipe, V;

Publicação
PROGRESS IN ARTIFICIAL INTELLIGENCE, EPIA 2023, PT II

Abstract
Selective thinning is a crucial operation to reduce forest ignitable material, to control the eucalyptus species and maximise its profitability. The selection and removal of less vigorous stems allows the remaining stems to grow healthier and without competition for water, sunlight and nutrients. This operation is traditionally performed by a human operator and is time-intensive. This work simplifies selective thinning by removing the stem selection part from the human operator's side using a computer vision algorithm. For this, two distinct datasets of eucalyptus stems (with and without foliage) were built and manually annotated, and three Deep Learning object detectors (YOLOv5, YOLOv7 and YOLOv8) were tested on real context images to perform instance segmentation. YOLOv8 was the best at this task, achieving an Average Precision of 74% and 66% on non-leafy and leafy test datasets, respectively. A computer vision algorithm for automatic stem selection was developed based on the YOLOv8 segmentation output. The algorithm managed to get a Precision above 97% and a 81% Recall. The findings of this work can have a positive impact in future developments for automatising selective thinning in forested contexts.

2023

Tethered Unmanned Aerial Vehicles-A Systematic Review

Autores
Marques, MN; Magalhaes, SA; Dos Santos, FN; Mendonca, HS;

Publicação
ROBOTICS

Abstract
In recent years, there has been a remarkable surge in the development and research of tethered aerial systems, thus reflecting a growing interest in their diverse applications. Long-term missions involving aerial vehicles present significant challenges due to the limitations of current battery solutions. Tethered vehicles can circumvent such restrictions by receiving their power from an element on the ground such as a ground station or a mobile terrestrial platform. Tethered Unmanned Aerial Vehicles (UAVs) can also be applied to load transportation achieved by a single or multiple UAVs. This paper presents a comprehensive systematic literature review, with a special focus on solutions published in the last five years (2017-2022). It emphasizes the key characteristics that are capable of grouping publications by application scope, propulsion method, energy transfer solution, perception sensors, and control techniques adopted. The search was performed in six different databases, thereby resulting in 1172 unique publications, from which 182 were considered for inclusion in the data extraction phase of this review. Among the various aircraft types, multirotors emerged as the most widely used category. We also identified significant variations in the application scope of tethered UAVs, thus leading to tailored approaches for each use case, such as the fixed-wing model being predominant in the wind generation application and the lighter-than-air aircraft in the meteorology field. Notably, the classical Proportional-Integral-Derivative (PID) control scheme emerged as the predominant control methodology across the surveyed publications. Regarding energy transfer techniques, most publications did not explicitly describe their approach. However, among those that did, high-voltage DC energy transfer emerged as the preferred solution. In summary, this systematic literature review provides valuable insights into the current state of tethered aerial systems, thereby showcasing their potential as a robust and sustainable alternative to address the challenges associated with long-duration aerial missions and load transportation.

2023

Enhancing host-pathogen phenotyping dynamics: early detection of tomato bacterial diseases using hyperspectral point measurement and predictive modeling

Autores
Pereira, MR; dos Santos, FN; Tavares, F; Cunha, M;

Publicação
FRONTIERS IN PLANT SCIENCE

Abstract
Early diagnosis of plant diseases is needed to promote sustainable plant protection strategies. Applied predictive modeling over hyperspectral spectroscopy (HS) data can be an effective, fast, cost-effective approach for improving plant disease diagnosis. This study aimed to investigate the potential of HS point-of-measurement (POM) data for in-situ, non-destructive diagnosis of tomato bacterial speck caused by Pseudomonas syringae pv. tomato (Pst), and bacterial spot, caused by Xanthomonas euvesicatoria (Xeu), on leaves (cv. cherry). Bacterial artificial infection was performed on tomato plants at the same phenological stage. A sensing system composed by a hyperspectral spectrometer, a transmission optical fiber bundle with a slitted probe and a white light source were used for spectral data acquisition, allowing the assessment of 3478 spectral points. An applied predictive classification model was developed, consisting of a normalizing pre-processing strategy allied with a Linear Discriminant Analysis (LDA) for reducing data dimensionality and a supervised machine learning algorithm (Support Vector Machine - SVM) for the classification task. The predicted model achieved classification accuracies of 100% and 74% for Pst and Xeu test set assessments, respectively, before symptom appearance. Model predictions were coherent with host-pathogen interactions mentioned in the literature (e.g., changes in photosynthetic pigment levels, production of bacterial-specific molecules, and activation of plants' defense mechanisms). Furthermore, these results were coherent with visual phenotyping inspection and PCR results. The reported outcomes support the application of spectral point measurements acquired in-vivo for plant disease diagnosis, aiming for more precise and eco-friendly phytosanitary approaches.

2023

Reagent-less spectroscopy towards NPK sensing for hydroponics nutrient solutions

Autores
Silva, FM; Queirós, C; Pinho, T; Boaventura, J; Santos, F; Barroso, TG; Pereira, MR; Cunha, M; Martins, RC;

Publicação
SENSORS AND ACTUATORS B-CHEMICAL

Abstract
Nutrient quantification in hydroponic systems is essential. Reagent-less spectral quantification of nitrogen, phosphate and potassium faces challenges in accessing information-rich spectral signals and unscrambling interference from each constituent. Herein, we introduce information equivalence between spectra and sample composition, enabling extraction of consistent covariance to isolate nutrient-specific spectral information (N, P or K) in Hoagland nutrient solutions using orthogonal covariance modes. Chemometrics methods quantify nitrogen and potassium, but not phosphate. Orthogonal covariance modes, however, enable quantification of all three nutrients: nitrogen (N) with R = 0.9926 and standard error of 17.22 ppm, phosphate (P) with R = 0.9196 and standard error of 63.62 ppm, and potassium (K) with R = 0.9975 and standard error of 9.51 ppm. Including pH information significantly improves phosphate quantification (R = 0.9638, standard error: 43.16 ppm). Results demonstrate a direct relationship between spectra and Hoagland nutrient solution information, preserving NPK orthogonality and supporting orthogonal covariance modes. These modes enhance detection sensitivity by maximizing information of the constituent being quantified, while minimizing interferences from others. Orthogonal covariance modes predicted nitrogen (R = 0.9474, standard error: 29.95 ppm) accurately. Phosphate and potassium showed strong interference from contaminants, but most extrapolation samples were correctly diagnosed above the reference interval (83.26%). Despite potassium features outside the knowledge base, a significant correlation was obtained (R = 0.6751). Orthogonal covariance modes use unique N, P or K information for quantification, not spurious correlations due to fertilizer composition. This approach minimizes interferences during extrapolation to complex samples, a crucial step towards resilient nutrient management in hydroponics using spectroscopy.

2007

Forest fire detection with a small fixed wing autonomous aerial vehicle

Autores
Martins, A; Almeida, J; Almeida, C; Figueiredo, A; Santos, F; Bento, D; Silva, H; Silva, E;

Publicação
IFAC Proceedings Volumes (IFAC-PapersOnline)

Abstract
In this work a forest fire detection solution using small autonomous aerial vehicles is proposed. The FALCOS unmanned aerial vehicle developed for remote-monitoring purposes is described. This is a small size UAV with onboard vision processing and autonomous flight capabilities. A set of custom developed navigation sensors was developed for the vehicle. Fire detection is performed through the use of low cost digital cameras and near-infrared sensors. Test results for navigation and ignition detection in real scenario are presented.

  • 22
  • 24