2021
Autores
Neto, PC; Boutros, F; Pinto, JR; Saffari, M; Damer, N; Sequeira, AF; Cardoso, JS;
Publicação
Lecture Notes in Informatics (LNI), Proceedings - Series of the Gesellschaft fur Informatik (GI)
Abstract
The recent Covid-19 pandemic and the fact that wearing masks in public is now mandatory in several countries, created challenges in the use of face recognition systems (FRS). In this work, we address the challenge of masked face recognition (MFR) and focus on evaluating the verification performance in FRS when verifying masked vs unmasked faces compared to verifying only unmasked faces. We propose a methodology that combines the traditional triplet loss and the mean squared error (MSE) intending to improve the robustness of an MFR system in the masked-unmasked comparison mode. The results obtained by our proposed method show improvements in a detailed step-wise ablation study. The conducted study showed significant performance gains induced by our proposed training paradigm and modified triplet loss on two evaluation databases.
2022
Autores
Sequeira, AE; Gomez Barrero, M; Damer, N; Correia, PL;
Publicação
IET BIOMETRICS
Abstract
2022
Autores
Huber, M; Boutros, F; Luu, AT; Raja, K; Ramachandra, R; Damer, N; Neto, PC; Goncalves, T; Sequeira, AF; Cardoso, JS; Tremoco, J; Lourenco, M; Serra, S; Cermeno, E; Ivanovska, M; Batagelj, B; Kronovsek, A; Peer, P; Struc, V;
Publicação
2022 IEEE INTERNATIONAL JOINT CONFERENCE ON BIOMETRICS (IJCB)
Abstract
This paper presents a summary of the Competition on Face Morphing Attack Detection Based on Privacy-aware Synthetic Training Data (SYN-MAD) held at the 2022 International Joint Conference on Biometrics (IJCB 2022). The competition attracted a total of 12 participating teams, both from academia and industry and present in 11 different countries. In the end, seven valid submissions were submitted by the participating teams and evaluated by the organizers. The competition was held to present and attract solutions that deal with detecting face morphing attacks while protecting people's privacy for ethical and legal reasons. To ensure this, the training data was limited to synthetic data provided by the organizers. The submitted solutions presented innovations that led to outperforming the considered baseline in many experimental settings. The evaluation benchmark is now available at: https://github.com/marcohuber/SYN-MAD-2022.
2025
Autores
Huber, M; Neto, PC; Sequeira, AF; Damer, N;
Publicação
2025 IEEE/CVF WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION WORKSHOPS, WACVW
Abstract
Face recognition (FR) systems are vulnerable to morphing attacks, which refer to face images created by morphing the facial features of two different identities into one face image to create an image that can match both identities, allowing serious security breaches. In this work, we apply a frequency-based explanation method from the area of explainable face recognition to shine a light on how FR models behave when processing a bona fide or attack pair from a frequency perspective. In extensive experiments, we used two different state-of-the-art FR models and six different morphing attacks to investigate possible differences in behavior. Our results show that FR models rely differently on different frequency bands when making decisions for bona fide pairs and morphing attacks. In the following step, we show that this behavioral difference can be used to detect morphing attacks in an unsupervised setup solely based on the observed frequency-importance differences in a generalizable manner.
2026
Autores
Capozzi, L; Ferreira, L; Gonçalves, T; Rebelo, A; Cardoso, JS; Sequeira, AF;
Publicação
PATTERN RECOGNITION AND IMAGE ANALYSIS, IBPRIA 2025, PT II
Abstract
The rapid advancement of wireless technologies, particularly Wi-Fi, has spurred significant research into indoor human activity detection across various domains (e.g., healthcare, security, and industry). This work explores the non-invasive and cost-effective Wi-Fi paradigm and the application of deep learning for human activity recognition using Wi-Fi signals. Focusing on the challenges in machine interpretability, motivated by the increase in data availability and computational power, this paper uses explainable artificial intelligence to understand the inner workings of transformer-based deep neural networks designed to estimate human pose (i.e., human skeleton key points) from Wi-Fi channel state information. Using different strategies to assess the most relevant sub-carriers (i.e., rollout attention and masking attention) for the model predictions, we evaluate the performance of the model when it uses a given number of sub-carriers as input, selected randomly or by ascending (high-attention) or descending (low-attention) order. We concluded that the models trained with fewer (but relevant) sub-carriers are competitive with the baseline (trained with all sub-carriers) but better in terms of computational efficiency (i.e., processing more data per second).
2025
Autores
Albuquerque, C; Neto, PC; Gonc, T; Sequeira, AF;
Publicação
HCI FOR CYBERSECURITY, PRIVACY AND TRUST, HCI-CPT 2025, PT II
Abstract
Face recognition technology, despite its advancements and increasing accuracy, still presents significant challenges in explainability and ethical concerns, especially when applied in sensitive domains such as surveillance, law enforcement, and access control. The opaque nature of deep learning models jeopardises transparency, bias, and user trust. Concurrently, the proliferation of web applications presents a unique opportunity to develop accessible and interactive tools for demonstrating and analysing these complex systems. These tools can facilitate model decision exploration with various images, aiding in bias mitigation or enhancing users' trust by allowing them to see the model in action and understand its reasoning. We propose an explainable face recognition web application designed to support enrolment, identification, authentication, and verification while providing visual explanations through pixel-wise importance maps to clarify the model's decision-making process. The system is built in compliance with the European Union General Data Protection Regulation, ensuring data privacy and user control over personal information. The application is also designed for scalability, capable of efficiently managing large datasets. Load tests conducted on databases containing up to 1,000,000 images confirm its efficiency. This scalability ensures robust performance and a seamless user experience even with database growth.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.