2012
Autores
Pinto, AMG; Moreira, AP; Costa, PG;
Publicação
Telkomnika
Abstract
This paper presents a visual localization approach that is suitable for domestic and industrial environments as it enables accurate, reliable and robust pose estimation. The mobile robot is equipped with a single camera which update sits pose whenever a landmark is available on the field of view. The innovation presented by this research focuses on the artificial landmark system which has the ability to detect the presence of the robot, since both entities communicate with each other using an infrared signal protocol modulated in frequency. Besides this communication capability, each landmark has several high intensity light-emitting diodes (LEDs) that shine only for some instances according to the communication, which makes it possible for the camera shutter and the blinking of the LEDs to synchronize. This synchronization increases the system tolerance concerning changes in brightness in the ambient lights over time, independently of the landmarks location. Therefore, the environment's ceiling is populated with several landmarks and an Extended Kalman Filter is used to combine the dead-reckoning and landmark information. This increases the flexibility of the system by reducing the number of landmarks required. The experimental evaluation was conducted in a real indoor environment with an autonomous wheelchair prototype.
2011
Autores
Pinto, AM; Rocha, LF; Moreira, AP; Costa, PG;
Publicação
PROGRESS IN ARTIFICIAL INTELLIGENCE
Abstract
Nowadays,it is far more common to see mobile robotics working in the industrial sphere due to the mandatory need to achieve a new level of productivity and increase profits by reducing production costs. Management scheduling and task scheduling are crucial for companies that incessantly seek to improve their processes, increase their efficiency, reduce their production time and capitalize on their infrastructure by increasing and improving production. However, when faced with the constant decrease in production cycles, management algorithms can no longer solely focus on the mere management of the resources available, they must attempt to optimize every interaction between them, to achieve maximinn efficiency for each production resource. In this paper we focus on the presentation of the new competition called Robot Factory, its environment and its main objectives, paying special attention to the scheduling algorithm developed for this specific case study. The findings from the simulation approach have allowed us to conclude that mobile robotic path planning and the scheduling of the associated tasks represent a complex problem that has a strong impact on the efficiency of the entire production process.
2023
Autores
Abreu, N; Pinto, A; Matos, A; Pires, M;
Publicação
ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION
Abstract
Point cloud processing is an essential task in many applications in the AEC domain, such as automated progress assessment, quality control and 3D reconstruction. As much of the procedure used to process the point clouds is shared among these applications, we identify common processing steps and analyse relevant algorithms found in the literature published in the last 5 years. We start by describing current efforts on both progress and quality monitoring and their particular requirements. Then, in the context of those applications, we dive into the specific procedures related to processing point clouds acquired using laser scanners. An emphasis is given to the scan planning process, as it can greatly influence the data collection process and the quality of the data. The data collection phase is discussed, focusing on point cloud data acquired by laser scanning. Its operating mode is explained and the factors that influence its performance are detailed. Data preprocessing methodologies are presented, aiming to introduce techniques used in the literature to, among other aspects, increase the registration performance by identifying and removing redundant data. Geometry extraction techniques are described, concerning both interior and outdoor reconstruction, as well as currently used relationship representation structures. In the end, we identify certain gaps in the literature that may constitute interesting topics for future research. Based on this review, it is evident that a key limitation associated with both Scan-to-BIM and Scan-vs-BIM algorithms is handling missing data due to occlusion, which can be reduced by multi-platform sensor fusion and efficient scan planning. Another limitation is the lack of consideration for laser scanner performance characteristics when planning the scanning operation and the apparent disconnection between the planning and data collection stages. Furthermore, the lack of representative benchmark datasets is hindering proper comparison of Scan-to-BIM and Scan-vs-BIM techniques, as well as the integration of state-of-the-art deep-learning methods that can give a positive contribution in scene interpretation and modelling.
2023
Autores
Claro, RM; Pereira, MI; Neves, FS; Pinto, AM;
Publicação
IEEE ACCESS
Abstract
The use of Unmanned Aerial Vehicles (UAVs) in different inspection tasks is increasing. This technology reduces inspection costs and collects high quality data of distinct structures, including areas that are not easily accessible by human operators. However, the reduced energy available on the UAVs limits their flight endurance. To increase the autonomy of a single flight, it is important to optimize the path to be performed by the UAV, in terms of energy loss. Therefore, this work presents a novel formulation of the Travelling Salesman Problem (TSP) and a path planning algorithm that uses a UAV energy model to solve this optimization problem. The novel TSP formulation is defined as Asymmetric Travelling Salesman Problem with Precedence Loss (ATSP-PL), where the cost of moving the UAV depends on the previous position. The energy model relates each UAV movement with its energy consumption, while the path planning algorithm is focused on minimizing the energy loss of the UAV, ensuring that the structure is fully covered. The developed algorithm was tested in both simulated and real scenarios. The simulated experiments were performed with realistic models of wind turbines and a UAV, whereas the real experiments were performed with a real UAV and an illumination tower. The inspection paths generated presented improvements over 24% and 8%, when compared with other methods, for the simulated and real experiments, respectively, optimizing the energy consumption of the UAV.
2023
Autores
Neves, FS; Claro, RM; Pinto, AM;
Publicação
SENSORS
Abstract
A perception module is a vital component of a modern robotic system. Vision, radar, thermal, and LiDAR are the most common choices of sensors for environmental awareness. Relying on singular sources of information is prone to be affected by specific environmental conditions (e.g., visual cameras are affected by glary or dark environments). Thus, relying on different sensors is an essential step to introduce robustness against various environmental conditions. Hence, a perception system with sensor fusion capabilities produces the desired redundant and reliable awareness critical for real-world systems. This paper proposes a novel early fusion module that is reliable against individual cases of sensor failure when detecting an offshore maritime platform for UAV landing. The model explores the early fusion of a still unexplored combination of visual, infrared, and LiDAR modalities. The contribution is described by suggesting a simple methodology that intends to facilitate the training and inference of a lightweight state-of-the-art object detector. The early fusion based detector achieves solid detection recalls up to 99% for all cases of sensor failure and extreme weather conditions such as glary, dark, and foggy scenarios in fair real-time inference duration below 6 ms.
2023
Autores
Claro, RM; Silva, DB; Pinto, AM;
Publicação
ROBOTICS AND AUTONOMOUS SYSTEMS
Abstract
For Vertical Take-Off and Landing Unmanned Aerial Vehicles (VTOL UAVs) to operate autonomously and effectively, it is mandatory to endow them with precise landing abilities. The UAV has to be able to detect the landing target and to perform the landing maneuver without compromising its own safety and the integrity of its surroundings. However, current UAVs do not present the required robustness and reliability for precise landing in highly demanding scenarios, particularly due to their inadequacy to perform accordingly under challenging lighting and weather conditions, including in day and night operations.This work proposes a multimodal fiducial marker, named ArTuga (Augmented Reality Tag for Unmanned vision-Guided Aircraft), capable of being detected by an heterogeneous perception system for accurate and precise landing in challenging environments and daylight conditions. This research combines photometric and radiometric information by proposing a real-time multimodal fusion technique that ensures a robust and reliable detection of the landing target in severe environments.Experimental results using a real multicopter UAV show that the system was able to detect the proposed marker in adverse conditions (such as at different heights, with intense sunlight and in dark environments). The obtained average accuracy for position estimation at 1 m height was of 0.0060 m with a standard deviation of 0.0003 m. Precise landing tests obtained an average deviation of 0.027 m from the proposed marker, with a standard deviation of 0.026 m. These results demonstrate the relevance of the proposed system for the precise landing in adverse conditions, such as in day and night operations with harsh weather conditions.(c) 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.