Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por Carlos Ferreira

2020

Session details: Theme: Information systems: DS - Data streams track

Autores
Bifet, A; Carvalho, A; Ferreira, C; Gama, J;

Publicação
Proceedings of the 35th Annual ACM Symposium on Applied Computing

Abstract

2020

Editorial message: Special track on data streams

Autores
Bifet, A; Carvalho, A; Ferreira, C; Gama, J;

Publicação
Proceedings of the ACM Symposium on Applied Computing

Abstract

2021

EDITORIAL MESSAGE

Autores
Bifet, A; Ferreira, C; Gama, J; Gomes, HM;

Publicação
Proceedings of the ACM Symposium on Applied Computing

Abstract

2022

Session details: Theme: Information systems: DS - data streams track

Autores
Bifet, A; Ferreira, C; Gama, J; Gomes, HM;

Publicação
Proceedings of the 37th ACM/SIGAPP Symposium on Applied Computing

Abstract

2022

EDITORIAL MESSAGE Special Track on Data Streams

Autores
Bifet, A; Ferreira, C; Gama, J; Gomes, HM;

Publicação
Proceedings of the ACM Symposium on Applied Computing

Abstract
[No abstract available]

2025

Fine-Tuning Transformer-Based LLMs in Hierarchical Text Classification

Autores
Santos, J; Silva, N; Ferreira, C; Gama, J;

Publicação
Discovery Science - 28th International Conference, DS 2025, Ljubljana, Slovenia, September 23-25, 2025, Proceedings

Abstract
Hierarchical document classification is essential for structuring large-scale textual corpora in domains such as digital libraries and academic repositories. While recent advances in large language models (LLMs) have opened new possibilities for text classification, their applicability to hierarchical settings under real-world constraints remains underexplored. This study investigates both generative and discriminative transformer-based models, evaluating their effectiveness across multiple inference strategies: zero-shot baseline, local fine-tuning, and a global approach using category-specific models. Experiments on two real-world hierarchical datasets provide a comprehensive comparison of classification accuracy, F1-macro scores, and inference times. The results highlight that, although generative LLMs can deliver competitive (yet variable) performance at higher levels of the hierarchy, their high inference costs hinder their use in time-sensitive applications. In contrast, fine-tuned discriminative models—particularly BERT-based architectures—consistently offer a more favorable trade-off between performance and efficiency. © 2025 Elsevier B.V., All rights reserved.

  • 7
  • 10