2023
Autores
Loureiro, JP; Teixeira, FB; Campos, R;
Publicação
2023 IEEE 9TH WORLD FORUM ON INTERNET OF THINGS, WF-IOT
Abstract
The exploration of the ocean has got an increasing interest, including activities such as offshore wind farms and deep-sea mining. However, the ocean environment and the high cost of operations, namely for manned missions, have led to the development of Autonomous Underwater Vehicles (AUVs) and other sensing platforms. AUVs play a vital role in these environments, relying on communications systems to operate and exchange sensor data. Yet, reliable and energy-efficient broad-band wireless communications underwater remain an unsolved challenge, despite the recent advances in the field. We present a novel multimodal approach, named DURIUS, that considers the movement of the AUV to convey the sensor data and selects the most suitable underwater wireless communications technology - acoustic, optical or radio - according to the underwater context, targeting maximum performance and minimum energy consumption. Our analytical results show that DURIUS increases data throughput and reduces energy consumption when compared with the state of the art approaches.
2011
Autores
Teixeira, F; Calçada, T; Ricardo, M;
Publicação
Mobile Networks and Management - Third International ICST Conference, MONAMI 2011, Aveiro, Portugal, September 21-23, 2011, Revised Selected Papers
Abstract
A Wireless Mesh Network (WMN) is an effective solution to provide Internet connectivity to large areas and its efficiency may increase if multiple radio channels are used in the mesh backbone. This paper proposes a protocol for centralized channel assignment in single-radio WMNs. This protocol has the capability to discover all the links available between Mesh Access Points (MAPs), independently of the channel they operate. With this information, a network manager can assign the right channel to each MAP in order to, for instance, maximize the network throughput. The proposed protocol extends WiFIX [1] which is a low overhead solution for implementing IEEE 802.11-based WMNs. © 2012 ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.