Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por João Vinagre

2021

Hyperparameter self-tuning for data streams

Autores
Veloso, B; Gama, J; Malheiro, B; Vinagre, J;

Publicação
INFORMATION FUSION

Abstract
The number of Internet of Things devices generating data streams is expected to grow exponentially with the support of emergent technologies such as 5G networks. Therefore, the online processing of these data streams requires the design and development of suitable machine learning algorithms, able to learn online, as data is generated. Like their batch-learning counterparts, stream-based learning algorithms require careful hyperparameter settings. However, this problem is exacerbated in online learning settings, especially with the occurrence of concept drifts, which frequently require the reconfiguration of hyperparameters. In this article, we present SSPT, an extension of the Self Parameter Tuning (SPT) optimisation algorithm for data streams. We apply the Nelder-Mead algorithm to dynamically-sized samples, converging to optimal settings in a single pass over data while using a relatively small number of hyperparameter configurations. In addition, our proposal automatically readjusts hyperparameters when concept drift occurs. To assess the effectiveness of SSPT, the algorithm is evaluated with three different machine learning problems: recommendation, regression, and classification. Experiments with well-known data sets show that the proposed algorithm can outperform previous hyperparameter tuning efforts by human experts. Results also show that SSPT converges significantly faster and presents at least similar accuracy when compared with the previous double-pass version of the SPT algorithm.

2021

ORSUM 2021-4th Workshop on Online Recommender Systems and User Modeling

Autores
Vinagre, J; Jorge, AM; Al Ghossein, M; Bifet, A;

Publicação
15TH ACM CONFERENCE ON RECOMMENDER SYSTEMS (RECSYS 2021)

Abstract
Modern online services continuously generate data at very fast rates. This continuous flow of data encompasses content - e.g. posts, news, products, comments -, but also user feedback - e.g. ratings, views, reads, clicks -, together with context data - user device, spacial or temporal data, user task or activity, weather. This can be overwhelming for systems and algorithms designed to train in batches, given the continuous and potentially fast change of content, context and user preferences or intents. Therefore, it is important to investigate online methods able to transparently adapt to the inherent dynamics of online services. Incremental models that learn from data streams are gaining attention in the recommender systems community, given their natural ability to deal with the continuous flows of data generated in dynamic, complex environments. User modeling and personalization can particularly benefit from algorithms capable of maintaining models incrementally and online. The objective of this workshop is to foster contributions and bring together a growing community of researchers and practitioners interested in online, adaptive approaches to user modeling, recommendation and personalization, and their implications regarding multiple dimensions, such as evaluation, reproducibility, privacy and explainability.

2022

Preface to the special issue on dynamic recommender systems and user models

Autores
Vinagre, J; Jorge, AM; Al-Ghossein, M; Bifet, A; Cremonesi, P;

Publicação
USER MODELING AND USER-ADAPTED INTERACTION

Abstract
[No abstract available]

2022

Flexible Fine-grained Data Access Management for Hyperledger Fabric

Autores
Parente, J; Alonso, AN; Coelho, F; Vinagre, J; Bastos, P;

Publicação
2022 FOURTH INTERNATIONAL CONFERENCE ON BLOCKCHAIN COMPUTING AND APPLICATIONS (BCCA)

Abstract
As blockchains go beyond cryptocurrencies into applications in multiple industries such as Insurance, Healthcare and Banking, handling personal or sensitive data, data access control becomes increasingly relevant. Access control mechanisms proposed so far are mostly based on requester identity, particularly for permissioned blockchain platforms, and are limited to binary, all-or-nothing access decisions. This is the case with Hyperledger Fabric's native access control mechanisms and, as permission updates require consensus, these fall short regarding the flexibility required to address GDPR-derived policies and client consent management. We propose SDAM, a novel access control mechanism for Fabric that enables fine-grained and dynamic control policies, using both contextual and resource attributes for decisions. Instead of binary results, decisions may also include mandatory data transformations as to conform with the expressed policy, all without modifications to Fabric. Results show that SDAM's overhead w.r.t baseline Fabric is acceptable. The scalability of the approach w.r.t to the number of concurrent clients is also evaluated and found to follow Fabric's.

2025

Generative AI and the Future of the Digital Commons: Five Open Questions and Knowledge Gaps

Autores
Noroozian, A; Aldana, L; Arisi, M; Asghari, H; Avila, R; Bizzaro, PG; Chandrasekhar, R; Consonni, C; Angelis, DD; Chiara, FD; Rio Chanona, Md; de Rosnay, MD; Eriksson, M; Font, F; Gómez, E; Guillier, V; Gutermuth, L; Hartmann, D; Kaffee, LA; Keller, P; Stalder, F; Vinagre, J; Vrandecic, D; Wasielewski, A;

Publicação
CoRR

Abstract

2025

Measuring the stability and plasticity of recommender systems

Autores
Lavoura, MJ; Jungnickel, R; Vinagre, J;

Publicação
CoRR

Abstract

  • 5
  • 10