2022
Autores
Santos, LC; Santos, FN; Valente, A; Sobreira, H; Sarmento, J; Petry, M;
Publicação
IEEE ACCESS
Abstract
The Agri-Food production requirements needs a more efficient and autonomous processes, and robotics will play a significant role in this process. Deploying agricultural robots on the farm is still a challenging task. Particularly in slope terrains, where it is crucial to avoid obstacles and dangerous steep slope zones. Path planning solutions may fail under several circumstances, as the appearance of a new obstacle. This work proposes a novel open-source solution called AgRobPP-CA to autonomously perform obstacle avoidance during robot navigation. AgRobPP-CA works in real-time for local obstacle avoidance, allowing small deviations, avoiding unexpected obstacles or dangerous steep slope zones, which could impose a fall of the robot. Our results demonstrated that AgRobPP-CA is capable of avoiding obstacles and high slopes in different vineyard scenarios, with low computation requirements. For example, in the last trial, AgRobPP-CA avoided a steep ramp that could impose a fall to the robot.
2022
Autores
Costa, GD; Petry, MR; Moreira, AP;
Publicação
SENSORS
Abstract
With the continuously growing usage of collaborative robots in industry, the need for achieving a seamless human-robot interaction has also increased, considering that it is a key factor towards reaching a more flexible, effective, and efficient production line. As a prominent and prospective tool to support the human operator to understand and interact with robots, Augmented Reality (AR) has been employed in numerous human-robot collaborative and cooperative industrial applications. Therefore, this systematic literature review critically appraises 32 papers' published between 2016 and 2021 to identify the main employed AR technologies, outline the current state of the art of augmented reality for human-robot collaboration and cooperation, and point out future developments for this research field. Results suggest that this is still an expanding research field, especially with the advent of recent advancements regarding head-mounted displays (HMDs). Moreover, projector-based and HMDs developed approaches are showing promising positive influences over operator-related aspects such as performance, task awareness, and safety feeling, even though HMDs need further maturation in ergonomic aspects. Further research should focus on large-scale assessment of the proposed solutions in industrial environments, involving the solution's target audience, and on establishing standards and guidelines for developing AR assistance systems.
2022
Autores
Sousa, RB; Petry, MR; Costa, PG; Moreira, AP;
Publicação
JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS
Abstract
Odometry calibration adjusts the kinematic parameters or directly the robot's model to improve the wheeled odometry accuracy. The existent literature considers in the calibration procedure only one steering geometry (differential drive, Ackerman/tricycle, or omnidirectional). Our method, the OptiOdom calibration algorithm, generalizes the odometry calibration problem. It is developed an optimization-based approach that uses the improved Resilient Propagation without weight-backtracking (iRprop-) for estimating the kinematic parameters using only the position data of the robot. Even though a calibration path is suggested to be used in the calibration procedure, the OptiOdom method is not path-specific. In the experiments performed, the OptiOdom was tested using four different robots on a square, arbitrary, and suggested calibration paths. The OptiTrack motion capture system was used as a ground-truth. Overall, the use of OptiOdom led to improvements in the odometry accuracy (in terms of maximum distance and absolute orientation errors over the path) over the existent literature while being a generalized approach to the odometry calibration problem. The OptiOdom and the methods from the literature implemented in the article are available in GitHub as an open-source repository.
2025
Autores
Martins, JG; Nutonen, K; Costa, P; Kuts, V; Otto, T; Sousa, A; Petry, MR;
Publicação
2025 IEEE INTERNATIONAL CONFERENCE ON AUTONOMOUS ROBOT SYSTEMS AND COMPETITIONS, ICARSC
Abstract
Digital twins enable real-time modeling, simulation, and monitoring of complex systems, driving advancements in automation, robotics, and industrial applications. This study presents a large-scale digital twin-testing facility for evaluating mobile robots and pilot robotic systems in a research laboratory environment. The platform integrates high-fidelity physical and environmental models, providing a controlled yet dynamic setting for analyzing robotic behavior. A key feature of the system is its comprehensive data collection framework, capturing critical parameters such as position, orientation, and velocity, which can be leveraged for machine learning, performance optimization, and decision-making. The facility also supports the simulation of discrete operational systems, using predictive modeling to bridge informational gaps when real-time data updates are unavailable. The digital twin was validated through a matrix manufacturing system simulation, with an Augmented Reality (AR) interface on the HoloLens 2 to overlay digital information onto mobile platform controllers, enhancing situational awareness. The main contributions include a digital twin framework for deploying data-driven robotic systems and three key AR/VR integration optimization methods. Demonstrated in a laboratory setting, the system is a versatile tool for research and industrial applications, fostering insights into robotic automation and digital twin scalability while reducing costs and risks associated with real-world testing.
2025
Autores
Couto, MB; Petry, MR; Mendes, A; Silva, MF;
Publicação
2025 IEEE INTERNATIONAL CONFERENCE ON AUTONOMOUS ROBOT SYSTEMS AND COMPETITIONS, ICARSC
Abstract
The growing reliance on e-commerce and the demand for efficient intralogistics operations have increased the need for automation, while labour shortages continue to pose significant challenges. When combined with the inherent risks of forklift operation, this circumstance prompted businesses to look for robotic solutions for intralogistics tasks. However, robots are still limited when they come across situations that are outside of their programming scope and often need assistance from humans. To achieve the long-term goal of enhancing intralogistics operation, we propose the development of a virtual reality-based teleoperation system that allows remote operation of robot forklifts with minimal latency. Considering the specificities of the teleoperation process and network dynamics, we conduct detailed modelling to analyse latency factors, optimise system performance, and ensure a seamless user experience. Experimental results on a mobile robot have shown that the proposed teleoperation system achieves an average glass-to-glass latency of 368 ms, with capturing latency contributing to approximately 60% of the total delay. The results also indicate that network oscillations significantly impact image quality and user experience, emphasising the importance of a stable network infrastructure.
2025
Autores
Grazi, L; Alonso, AF; Gasiorek, A; Llopis, AMP; Grajeda, A; Kanakis, A; Vidal, AR; Parri, A; Vidal, F; Ergas, I; Zeljkovic, I; Durá, JP; Mein, JP; Katsampiris-Salgado, K; Rocha, LF; Rodriguez, LN; Petry, MR; Neufeld, M; Dimitropoulos, N; Köster, N; Mimica, R; Fernandes, SV; Crea, S; Makris, S; Giartzas, S; Settler, V; Masood, J;
Publicação
ELECTRONICS
Abstract
Small to medium-sized shipyards play a crucial role in the European naval industry. However, the globalization of technology has increased competition, posing significant challenges to shipyards, particularly in domestic markets for short sea, work, and inland vessels. Many shipyard operations still rely on manual, labor-intensive tasks performed by highly skilled operators. In response, the adoption of new tools is essential to enhance efficiency and competitiveness. This paper presents a methodology for developing a human-centric portfolio of advanced technologies tailored for shipyard environments, covering processes such as shipbuilding, retrofitting, outfitting, and maintenance. The proposed technological solutions, which have achieved high technology readiness levels, include 3D modeling and digitalization, robotics, augmented and virtual reality, and occupational exoskeletons. Key findings from real-scale demonstrations are discussed, along with major development and implementation challenges. Finally, best practices and recommendations are provided to support both technology developers seeking fully tested tools and end users aiming for seamless adoption.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.