Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por António Paulo Moreira

2016

CONTROLO 2016

Autores
Paulo Garrido; Filomena Soares; António Paulo Moreira;

Publicação

Abstract

2014

CONTROLO’2014 – Proceedings of the 11th Portuguese Conference on Automatic Control

Autores
António Paulo Moreira; Aníbal Matos; Germano Veiga;

Publicação

Abstract

2023

Sound-Based Anomalies Detection in Agricultural Robotics Application

Autores
Baltazar, AR; dos Santos, FN; Soares, SP; Moreira, AP; Cunha, JB;

Publicação
PROGRESS IN ARTIFICIAL INTELLIGENCE, EPIA 2023, PT II

Abstract
Agricultural robots are exposed to adverse conditions reducing the components' lifetime. To reduce the number of inspection, repair and maintenance activities, we propose using audio-based systems to diagnose and detect anomalies in these robots. Audio-based systems are non-destructive/intrusive solutions. Besides, it provides a significant amount of data to diagnose problems and for a wiser scheduler for preventive activities. So, in this work, we installed two microphones in an agricultural robot with a mowing tool. Real audio data was collected with the robotic mowing tool operating in several conditions and stages. Besides, a Sound-based Anomalies Detector (SAD) is proposed and tested with this dataset. The SAD considers a short-time Fourier transform (STFT) computation stage connected to a Support Vector Machine (SVM) classifier. The results with the collected dataset showed an F1 score between 95% and 100% in detecting anomalies in a mowing robot operation.

2024

MonoVisual3DFilter: 3D tomatoes' localisation with monocular cameras using histogram filters

Autores
Magalhaes, SAC; dos Santos, FN; Moreira, AP; Dias, JMM;

Publicação
ROBOTICA

Abstract
Performing tasks in agriculture, such as fruit monitoring or harvesting, requires perceiving the objects' spatial position. RGB-D cameras are limited under open-field environments due to lightning interferences. So, in this study, we state to answer the research question: How can we use and control monocular sensors to perceive objects' position in the 3D task space? Towards this aim, we approached histogram filters (Bayesian discrete filters) to estimate the position of tomatoes in the tomato plant through the algorithm MonoVisual3DFilter. Two kernel filters were studied: the square kernel and the Gaussian kernel. The implemented algorithm was essayed in simulation, with and without Gaussian noise and random noise, and in a testbed at laboratory conditions. The algorithm reported a mean absolute error lower than 10 mm in simulation and 20 mm in the testbed at laboratory conditions with an assessing distance of about 0.5 m. So, the results are viable for real environments and should be improved at closer distances.

2024

Assessment of Multiple Fiducial Marker Trackers on Hololens 2

Autores
Costa, GM; Petry, MR; Martins, JG; Moreira, APGM;

Publicação
IEEE ACCESS

Abstract
Fiducial markers play a fundamental role in various fields in which precise localization and tracking are paramount. In Augmented Reality, they provide a known reference point in the physical world so that AR systems can accurately identify, track, and overlay virtual objects. This accuracy is essential for creating a seamless and immersive AR experience, particularly when prompted to cope with the sub-millimeter requirements of medical and industrial applications. This research article presents a comparative analysis of four fiducial marker tracking algorithms, aiming to assess and benchmark their accuracy and precision. The proposed methodology compares the pose estimated by four algorithms running on Hololens 2 with those provided by a highly accurate ground truth system. Each fiducial marker was positioned in 25 sampling points with different distances and orientations. The proposed evaluation method is not influenced by human error, relying only on a high-frequency and accurate motion tracking system as ground truth. This research shows that it is possible to track the fiducial markers with translation and rotation errors as low as 1.36 mm and 0.015 degrees using ArUco and Vuforia, respectively.

2024

Robotic Arm Development for a Quadruped Robot

Autores
Lopes, MS; Moreira, AP; Silva, MF; Santos, F;

Publicação
SYNERGETIC COOPERATION BETWEEN ROBOTS AND HUMANS, VOL 2, CLAWAR 2023

Abstract
Quadruped robots have gained significant attention in the robotics world due to their capability to traverse unstructured terrains, making them advantageous in search and rescue and surveillance operations. However, their utility is substantially restricted in situations where object manipulation is necessary. A potential solution is to integrate a robotic arm, although this can be challenging since the arm's addition may unbalance the whole system, affecting the quadruped locomotion. To address this issue, the robotic arm must be adapted to the quadruped robot, which is not viable with commercially available products. This paper details the design and development of a robotic arm that has been specifically built to integrate with a quadruped robot to use in a variety of agricultural and industrial applications. The design of the arm, including its physical model and kinematic configuration, is presented. To assess the effectiveness of the prototype, a simulation was conducted with a motion-planning algorithm based on the arm's inverse kinematics. The simulation results confirm the system's stability and the functionality of the robotic arm's movement.

  • 33
  • 45