2007
Autores
Rodrigues, PP; Gama, J;
Publicação
Modulad
Abstract
2008
Autores
Gama, J;
Publicação
Next Generation of Data Mining.
Abstract
2008
Autores
May, M; Berendt, B; Cornuéjols, A; Gama, J; Giannotti, F; Hotho, A; Malerba, D; Menasalvas, E; Morik, K; Pedersen, RU; Saitta, L; Saygin, Y; Schuster, A; Vanhoof, K;
Publicação
Next Generation of Data Mining.
Abstract
2012
Autores
Moreira Matias, L; Ferreira, C; Gama, J; Mendes Moreira, J; De Sousa, JF;
Publicação
CEUR Workshop Proceedings
Abstract
Mining public transportation networks is a growing and explosive challenge due to the increasing number of information available. In highly populated urban zones, the vehicles can often fail the schedule. Such fails cause headway deviations (HD) between high-frequency bus pairs. In this paper, we propose to identify systematic HD which usually provokes the phenomenon known as Bus Bunching (BB). We use the PrefixSpan algorithm to accurately mine sequences of bus stops where multiple HD frequently emerges, forcing two or more buses to clump. Our results are promising: 1) we demonstrated that the BB origin can be modeled like a sequence mining problem where 2) the discovered patterns can easily identify the route schedule points to adjust in order to mitigate such events.
2012
Autores
Tork, HF; Oliveira, M; Gama, J; Malinowski, S; Morla, R;
Publicação
CEUR Workshop Proceedings
Abstract
Failure detection in telecommunication networks is a vital task. So far, several supervised and unsupervised solutions have been provided for discovering failures in such networks. Among them unsupervised approaches has attracted more attention since no label data is required [1]. Often, network devices are not able to provide information about the type of failure. In such cases, unsupervised setting is more appropriate for diagnosis. Among unsupervised approaches, Principal Component Analysis (PCA) has been widely used for anomaly detection literature and can be applied to matrix data (e.g. Users-Features). However, one of the important properties of network data is their temporal sequential nature. So considering the interaction of dimensions over a third dimension, such as time, may provide us better insights into the nature of network failures. In this paper we demonstrate the power of three-way analysis to detect events and anomalies in time-evolving network data.
2012
Autores
Rodrigues, PP; Gama, J;
Publicação
CEUR Workshop Proceedings
Abstract
Smart grids consist of millions of automated electronic meters that will be installed in electricity distribution networks and connected to servers that will manage grid supervision, billing and customer services. World sustainability regarding energy management will definitely rely on such grids, so smart grids need also to be sustainable themselves. This sustainability depends on several research problems that emerge from this new setting (from power balance to energy markets) requiring new approaches for knowledge discovery and decision support. This paper presents a holistic distributed stream clustering view of possible solutions for those problems, supported by previous research in related domains. The approach is based on two orthogonal clustering algorithms, combined for a holistic clustering of the grid. Experimental results are included to illustrate the benefits of each algorithm, while the proposal is discussed in terms of application to smart grid problems. This holistic approach could be used to help solving some of the smart grid intelligent layer research problems, thus improving global sustainability.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.