2022
Autores
Teixeira, M; Pereira, T; Silva, F; Cunha, A; Oliveira, HP;
Publicação
2022 44TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY, EMBC
Abstract
Lung cancer is the leading cause of cancer death worldwide. Early low-dose computed tomography (CT) screening can decrease its mortality rate and computer-aided diagnoses systems may make these screenings more accessible. Radiomic features and supervised machine learning have traditionally been employed in these systems. Contrary to supervised methods, unsupervised learning techniques do not require large amounts of annotated data which are labor-intensive to gather and long training times. Therefore, recent approaches have used unsupervised methods, such as clustering, to improve the performance of supervised models. However, an analysis of purely unsupervised methods for malignancy prediction of lung nodules from CT images has not been performed. This work studies nodule malignancy in the LIDC-IDRI image collection of chest CT scans using established radiomic features and unsupervised learning methods based on k-Means, Spectral Clustering, and Gaussian Mixture clustering. All tested methods resulted in clusters of high homogeneity malignancy. Results suggest convex feature distributions and well-separated feature subspaces associated with different diagnoses. Furthermore, diagnosis uncertainty may be explained by common characteristics captured by radiomic features. The k-Means and Gaussian Mixture models are able to generalize to unseen data, achieving a balanced accuracy of 87.23% and 86.96% when inference was tested. These results motivate the usage of unsupervised approaches for malignancy prediction of lung nodules, such as cluster-then-label models. Clinical Relevance - Unsupervised clustering of radiomic features of lung nodules in chest CT scans can differentiate between malignant and benign cases and reflects experts' diagnosis uncertainty
2020
Autores
Malafaya, D; Domingues, S; Oliveira, HP;
Publicação
2020 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE
Abstract
Conventionally, vital sign monitoring for neonatal infants inside the Neonatal Intensive Care Unit is performed via probes affixed to their skin. However, such instruments may cause damage to the epidermis and increase the risk of infection as well as promote discomfort to the infant. As an alternative to traditional means of monitoring heart rate, remote Photoplethysmography techniques have been surging among the scientific community. These techniques have been vastly explored for adult subjects but not for neonatal infants, who would greatly benefit from such applications. This study aims at developing a regular consumer camera-based framework for continuous and contactless extraction of the heart rate in adult subjects in challenging conditions and investigating the tool's ability to adapt to a new domain which consists of newborn subjects and the real-world conditions of a Neonatal Intensive Care Unit.
2022
Autores
Frade, J; Pereira, T; Morgado, J; Silva, F; Freitas, C; Mendes, J; Negrao, E; de Lima, BF; da Silva, MC; Madureira, AJ; Ramos, I; Costa, JL; Hespanhol, V; Cunha, A; Oliveira, HP;
Publicação
MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING
Abstract
Lung diseases affect the lives of billions of people worldwide, and 4 million people, each year, die prematurely due to this condition. These pathologies are characterized by specific imagiological findings in CT scans. The traditional Computer-Aided Diagnosis (CAD) approaches have been showing promising results to help clinicians; however, CADs normally consider a small part of the medical image for analysis, excluding possible relevant information for clinical evaluation. Multiple Instance Learning (MIL) approach takes into consideration different small pieces that are relevant for the final classification and creates a comprehensive analysis of pathophysiological changes. This study uses MIL-based approaches to identify the presence of lung pathophysiological findings in CT scans for the characterization of lung disease development. This work was focus on the detection of the following: Fibrosis, Emphysema, Satellite Nodules in Primary Lesion Lobe, Nodules in Contralateral Lung and Ground Glass, being Fibrosis and Emphysema the ones with more outstanding results, reaching an Area Under the Curve (AUC) of 0.89 and 0.72, respectively. Additionally, the MIL-based approach was used for EGFR mutation status prediction - the most relevant oncogene on lung cancer, with an AUC of 0.69. The results showed that this comprehensive approach can be a useful tool for lung pathophysiological characterization.
2025
Autores
Neves, I; Freitas, C; Lemos, C; Oliveira, HP; Hespanhol, V; França, M; Pereira, T;
Publicação
Measurement and Evaluations in Cancer Care
Abstract
2025
Autores
Malafaia, M; Silva, F; Carvalho, DC; Martins, R; Dias, SC; Torrão, H; Oliveira, HP; Pereira, T;
Publicação
2025 IEEE 25th International Conference on Bioinformatics and Bioengineering (BIBE)
Abstract
2025
Autores
Sousa, JV; Oliveira, HP; Pereira, T;
Publicação
2025 IEEE 25th International Conference on Bioinformatics and Bioengineering (BIBE)
Abstract
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.