Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por Carlos Manuel Soares

2008

The impact of contextual information on the accuracy of existing recommender systems for Web personalization

Autores
Domingues, MA; Jorge, AM; Soares, C;

Publicação
Proceedings - 2008 IEEE/WIC/ACM International Conference on Web Intelligence, WI 2008

Abstract
Traditionally, recommender systems for the Web deal with applications that have two types of entities/dimensions, users and items. With these dimensions, a recommendation model can be built and used to identify a set of N items that will be of interest to a certain user. In this paper we propose a direct method that enriches the information in the access logs with new dimensions. We empirically test this method with two recommender systems, an item-based collaborative filtering technique and association rules, on three data sets. Our results show that while collaborative filtering is not able to take advantage of the new dimensions added, association rules are capable of profiting from our direct method. © 2008 IEEE.

2006

Factor analysis to support the visualization and interpretation of clusters of portal users

Autores
Rebelo, C; Brito, PQ; Soares, C; Jorge, A;

Publicação
2006 IEEE/WIC/ACM International Conference on Web Intelligence, (WI 2006 Main Conference Proceedings)

Abstract
Clusterings based on many variables are difficult to visualize and interpret. We present a methodology based on Factor Analysis (FA) which can be used for that purpose. FA generates a small set of variables which encode most of the information in the original variables. We apply the methodology to segment the users of a web portal, using access log data. It not only makes it simpler to visualize and understand the clusters which are obtained on the original variables but it also helps the analyst in selecting some of the original variables for further analysis of those clusters.

2006

Personalization of e-newsletters based on web log analysis and clustering

Autores
Carvalho, C; Jorge, AM; Soares, C;

Publicação
2006 IEEE/WIC/ACM International Conference on Web Intelligence, (WI 2006 Main Conference Proceedings)

Abstract
We present a methodology for the personalization of e-newsletters based on the analysis of user access logs. To approach the problem we have used clustering on the set of users, described by their web access patterns. Our work is evaluated using a case study with real data from e-newsletters sent by mail to users of a web portal, and can be adapted to similar situations. Positive results were obtained, indicating that the methodology is able to automatically select contents for a personalized e-newsletter.

2006

A web-based system to monitor the quality of meta-data in web portals

Autores
Domingues, MA; Soares, C; Jorge, AM;

Publicação
2006 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, Workshops Proceedings

Abstract
We present a web-based system to monitor the quality of the meta-data used to describe content in web portals. The system implements meta-data analysis using statistical, visualization and data mining tools. The web-based system enables the site's editor to detect and correct problems in the description of contents, thus improving the quality of the web portal and the satisfaction of its users. We have developed this system and tested it on a Portuguese portal for management executives.

2012

Finding interesting contexts for explaining deviations in bus trip duration using distribution rules

Autores
Jorge, AM; Mendes Moreira, J; De Sousa, JF; Soares, C; Azevedo, PJ;

Publicação
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

Abstract
In this paper we study the deviation of bus trip duration and its causes. Deviations are obtained by comparing scheduled times against actual trip duration and are either delays or early arrivals. We use distribution rules, a kind of association rules that may have continuous distributions on the consequent. Distribution rules allow the systematic identification of particular conditions, which we call contexts, under which the distribution of trip time deviations differs significantly from the overall deviation distribution. After identifying specific causes of delay the bus company operational managers can make adjustments to the timetables increasing punctuality without disrupting the service. © Springer-Verlag Berlin Heidelberg 2012.

2009

The Effect of Varying Parameters and Focusing on Bus Travel Time Prediction

Autores
Moreira, JM; Soares, C; Jorge, AM; de Sousa, JF;

Publicação
ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PROCEEDINGS

Abstract
Travel time prediction is an important tool for the planning tasks of mass transit and logistics companies. ID this paper we investigate the use of regression methods for the problem of predicting the travel time of buses in a Portuguese public transportation company. More specifically, we empirically evaluate the impact of varying parameters on the performance of different regression algorithms, such as support vector machines (SVM), random forests (RF) and projection pursuit, regression (PPR). We also evaluate the impact of the focusing tusks (example selection; domain value definition and feature selection) in the accuracy of those algorithms. Concerning the algorithms, we observe that 1) RF is quite robust to the choice of parameters and focusing methods: 2) the choice of parameters for SVM can be made independently of focusing methods while 3) for PPR they should be selected simultaneously. For the focusing methods, we observe that a stronger effect is obtained using example selection, particularly in combination with SVM.

  • 42
  • 46