Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por Ricardo Jorge Bessa

2023

Operating AI systems in the electricity sector under European's AI Act - Insights on compliance costs, profitability frontiers and extraterritorial effects

Autores
Heymann, F; Parginos, K; Bessa, RJ; Galus, M;

Publicação
ENERGY REPORTS

Abstract
Artificial intelligence (AI) brings great potential but also risks to the electricity industry. Following the EU's current regulatory proposal, the EU Regulation for Artificial Intelligence (AI Act), there will be direct, potentially adverse effects on companies of the electricity industry in Europe and beyond, as well as those active in the development of AI systems. In this paper, we develop a replicable framework for estimating compliance costs for different electricity market agents that will need to comply with the numerous requirements the AI Act imposes. The electricity systems of Austria, Greece and Switzerland are used as case-studies. We estimate annual, aggregated costs for electricity market agents ranging from less than one million to almost 200 million Euros per country, depending on compliance costs scenarios. Results suggest that a profit growth of 10% through AI utilization is needed to offset the highest added compliance cost of the AI Act on electricity market agents. Eventually, we further show how to assess the regional differences of these costs added to system operation, providing spatially disaggregated compliance costs estimates that consider the structural differences of the electricity industry within 26 Swiss cantons.

2023

ENEIDA DEEPGRID®: BRINGING THE OPERATIONAL AWARENESS TO THE LV GRID

Autores
Couto, R; Faria, J; Oliveira, J; Sampaio, G; Bessa, R; Rodrigues, F; Santos, R;

Publicação
IET Conference Proceedings

Abstract
This paper presents a novel solution integrated into the Eneida DeepGrid® platform for real-time voltage and active power estimation in low voltage grids. The tool utilizes smart grid infrastructure data, including historical data, real-time measurements from a subset of meters, and exogenous information such as weather forecasts and dynamic price signals. Unlike traditional methods, the solution does not require electrical or topological characterization and is not affected by observability issues. The performance of the tool was evaluated through a case study using 10 real networks located in Portugal, with results showing high estimation accuracy, even under scenarios of low smart meter coverage. © The Institution of Engineering and Technology 2023.

2024

Uncertainty-Aware Procurement of Flexibilities for Electrical Grid Operational Planning

Autores
Bessa, RJ; Moaidi, F; Viana, J; Andrade, JR;

Publicação
IEEE TRANSACTIONS ON SUSTAINABLE ENERGY

Abstract
In the power system decarbonization roadmap, novel grid management tools and market mechanisms are fundamental to solving technical problems concerning renewable energy forecast uncertainty. This work proposes a predictive algorithm for procurement of grid flexibility by the system operator (SO), which combines the SO flexible assets with active and reactive power short-term flexibility markets. The goal is to reduce the cognitive load of the human operator when analyzing multiple flexibility options and trajectories for the forecasted load/RES and create a human-in-the-loop approach for balancing risk, stakes, and cost. This work also formulates the decision problem into several steps where the operator must decide to book flexibility now or wait for the next forecast update (time-to-decide method), considering that flexibility (availability) price may increase with a lower notification time. Numerical results obtained for a public MV grid (Oberrhein) show that the time-to-decide method improves up to 22% a performance indicator related to a cost-loss matrix, compared to the option of booking the flexibility now at a lower price and without waiting for a forecast update.

2023

Data-driven Assessment of the DER Flexibility Impact on the LV Grid Management

Autores
Fritz, B; Sampaio, G; Bessa, RJ;

Publicação
2023 IEEE BELGRADE POWERTECH

Abstract
Low voltage (LV) grids face a challenge of effectively managing the growing presence of new loads like electric vehicles and heat pumps, along with the equally growing installation of rooftop photovoltaic panels. This paper describes practical applications of sensitivity factors, extracted from smart meter data (i.e., without resorting to grid models), to i) link voltage problems to different costumers/devices and their location in the grid, ii) manage the flexibility provided by distributed energy resources (DERs) to regulate voltage, and iii) assess favorable locations for DER capacity extensions, all with the aim of supporting the decision-making process of distribution system operators (DSOs) and the design of incentives for customers to invest in DERs. The methods are tested by running simulations based on historical meter data on six grid models provided by the EU-Joint Research Center. The results prove that it is feasible to implement advanced LV grid analysis and management tools despite the typical limitations in its electrical and topological characterisation, while avoiding the use of computationally heavy tools such as optimal power flows.

2023

PV Inverter Fault Classification using Machine Learning and Clarke Transformation

Autores
Costa, L; Silva, A; Bessa, RJ; Araújo, RE;

Publicação
2023 IEEE BELGRADE POWERTECH

Abstract
In a photovoltaic power plant (PVPP), the DC-AC converter (inverter) is one of the components most prone to faults. Even though they are key equipment in such installations, their fault detection techniques are not as much explored as PV module-related issues, for instance. In that sense, this paper is motivated to find novel tools for detection focused on the inverter, employing machine learning (ML) algorithms trained using a hybrid dataset. The hybrid dataset is composed of real and synthetic data for fault-free and faulty conditions. A dataset is built based on fault-free data from the PVPP and faulty data generated by a digital twin (DT). The combination DT and ML is employed using a Clarke/space vector representation of the inverter electrical variables, thus resulting in a novel feature engineering method to extract the most relevant features that can properly represent the operating condition of the PVPP. The solution that was developed can classify multiple operation conditions of the inverter with high accuracy.

2012

Methodologies to Determine Operating Reserves Due to Increased Wind Power

Autores
Holttinen, H; Milligan, M; Ela, E; Menemenlis, N; Dobschinski, J; Rawn, B; Bessa, RJ; Flynn, D; Gomez Lazaro, E; Detlefsen, NK;

Publicação
IEEE TRANSACTIONS ON SUSTAINABLE ENERGY

Abstract
Power systems with high wind penetration experience increased variability and uncertainty, such that determination of the required additional operating reserve is attracting a significant amount of attention and research. This paper presents methods used in recent wind integration analyses and operating practice, with key results that compare different methods or data. Wind integration analysis over the past several years has shown that wind variability need not be seen as a contingency event. The impact of wind will be seen in the reserves for nonevent operation ( normal operation dealing with deviations from schedules). Wind power will also result in some events of larger variability and large forecast errors that could be categorized as slow events. The level of operating reserve that is induced by wind is not constant during all hours of the year, so that dynamic allocation of reserves will reduce the amount of reserves needed in the system for most hours. The paper concludes with recent emerging trends.

  • 23
  • 29