Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por Jaime Cardoso

2026

Deciphering the Silent Signals: Unveiling Frequency Importance for Wi-Fi-Based Human Pose Estimation with Explainability

Autores
Capozzi, L; Ferreira, L; Gonçalves, T; Rebelo, A; Cardoso, JS; Sequeira, AF;

Publicação
PATTERN RECOGNITION AND IMAGE ANALYSIS, IBPRIA 2025, PT II

Abstract
The rapid advancement of wireless technologies, particularly Wi-Fi, has spurred significant research into indoor human activity detection across various domains (e.g., healthcare, security, and industry). This work explores the non-invasive and cost-effective Wi-Fi paradigm and the application of deep learning for human activity recognition using Wi-Fi signals. Focusing on the challenges in machine interpretability, motivated by the increase in data availability and computational power, this paper uses explainable artificial intelligence to understand the inner workings of transformer-based deep neural networks designed to estimate human pose (i.e., human skeleton key points) from Wi-Fi channel state information. Using different strategies to assess the most relevant sub-carriers (i.e., rollout attention and masking attention) for the model predictions, we evaluate the performance of the model when it uses a given number of sub-carriers as input, selected randomly or by ascending (high-attention) or descending (low-attention) order. We concluded that the models trained with fewer (but relevant) sub-carriers are competitive with the baseline (trained with all sub-carriers) but better in terms of computational efficiency (i.e., processing more data per second).

2025

H&E to IHC virtual staining methods in breast cancer: an overview and benchmarking

Autores
Klöckner, P; Teixeira, J; Montezuma, D; Fraga, J; Horlings, HM; Cardoso, JS; de Oliveira, SP;

Publicação
npj Digit. Medicine

Abstract

2025

GANs vs. Diffusion Models for Virtual Staining with the HER2match Dataset

Autores
Klöckner, P; Teixeira, J; Montezuma, D; Cardoso, JS; Horlings, HM; de Oliveira, SP;

Publicação
Deep Generative Models - 5th MICCAI Workshop, DGM4MICCAI 2025, Held in Conjunction with MICCAI 2025, Daejeon, South Korea, September 23, 2025, Proceedings

Abstract
Virtual staining is a promising technique that uses deep generative models to recreate histological stains, providing a faster and more cost-effective alternative to traditional tissue chemical staining. Specifically for H&E-HER2 staining transfer, despite a rising trend in publications, the lack of sufficient public datasets has hindered progress in the topic. Additionally, it is currently unclear which model frameworks perform best for this particular task. In this paper, we introduce the HER2match dataset, the first publicly available dataset with the same breast cancer tissue sections stained with both H&E and HER2. Furthermore, we compare the performance of several Generative Adversarial Networks (GANs) and Diffusion Models (DMs), and implement a novel Brownian Bridge Diffusion Model for H&E-HER2 translation. Our findings indicate that, overall, GANs perform better than DMs, with only the BBDM achieving comparable results. Moreover, we emphasize the importance of data alignment, as all models trained on HER2match produced vastly improved visuals compared to the widely used consecutive-slide BCI dataset. This research provides a new high-quality dataset, improving both model training and evaluation. In addition, our comparison of frameworks offers valuable guidance for researchers working on the topic. © 2025 Elsevier B.V., All rights reserved.

2025

Leveraging Cold Diffusion for the Decomposition of Identically Distributed Superimposed Images

Autores
Montenegro, H; Cardoso, JS;

Publicação
IEEE OPEN JOURNAL OF SIGNAL PROCESSING

Abstract
With the growing adoption of Deep Learning for imaging tasks in biometrics and healthcare, it becomes increasingly important to ensure privacy when using and sharing images of people. Several works enable privacy-preserving image sharing by anonymizing the images so that the corresponding individuals are no longer recognizable. Most works average images or their embeddings as an anonymization technique, relying on the assumption that the average operation is irreversible. Recently, cold diffusion models, based on the popular denoising diffusion probabilistic models, have succeeded in reversing deterministic transformations on images. In this work, we leverage cold diffusion to decompose superimposed images, empirically demonstrating that it is possible to obtain two or more identically-distributed images given their average. We propose novel sampling strategies for this task and show their efficacy on three datasets. Our findings highlight the risks of averaging images as an anonymization technique and argue for the use of alternative anonymization strategies.

2025

Balancing Beyond Discrete Categories: Continuous Demographic Labels for Fair Face Recognition

Autores
Neto, PC; Damer, N; Cardoso, JS; Sequeira, AF;

Publicação
CoRR

Abstract

2019

Editorial

Autores
Carneiro, G; Manuel, J; Tavares, RS; Bradley, AP; Papa, JP; Nascimento, JC; Cardoso, JS; Lu, Z; Belagiannis, V;

Publicação
Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization

Abstract

  • 40
  • 66