2024
Autores
Ferreira, CA; Ramos, I; Coimbra, M; Campilho, A;
Publicação
2024 IEEE 22ND MEDITERRANEAN ELECTROTECHNICAL CONFERENCE, MELECON 2024
Abstract
Lung cancer represents a significant health concern necessitating diligent monitoring of individuals at risk. While the detection of pulmonary nodules warrants clinical attention, not all cases require immediate surgical intervention, often calling for a strategic approach to follow-up decisions. The Lung-RADS guideline serves as a cornerstone in clinical practice, furnishing structured recommendations based on various nodule characteristics, including size, calcification, and texture, outlined within established reference tables. However, the reliance on labor-intensive manual measurements underscores the potential advantages of integrating decision support systems into this process. Herein, we propose a feature-based methodology aimed at enhancing clinical decision-making by automating the assessment of nodules in computed tomography scans. Leveraging algorithms tailored for nodule calcification, texture analysis, and segmentation, our approach facilitates the automated classification of follow-up recommendations aligned with Lung-RADS criteria. Comparison with a previously reported end-to-end image-based classification method revealed competitive performance, with the feature-based approach achieving an accuracy of 0.701 +/- 0.026, while the end-to-end method attained 0.727 +/- 0.020. The inherent explainability of the feature-based approach offers distinct advantages, allowing clinicians to scrutinize and modify individual features to address disagreements or rectify inaccuracies, thereby tailoring follow-up recommendations to patient profiles.
2023
Autores
Neto, A; Libânio, D; Ribeiro, MD; Coimbra, MT; Cunha, A;
Publicação
CENTERIS 2023 - International Conference on ENTERprise Information Systems / ProjMAN - International Conference on Project MANagement / HCist - International Conference on Health and Social Care Information Systems and Technologies 2023, Porto, Portugal, November 8-10, 2023.
Abstract
Metaplasia detection in upper gastrointestinal endoscopy is crucial to identify patients at higher risk of gastric cancer. Deep learning algorithms can be useful for detecting and localising these lesions during an endoscopy exam. However, to train these types of models, a lot of annotated data is needed, which can be a problem in the medical field. To overcome this, data augmentation techniques are commonly applied to increase the dataset's variability but need to be adapted to the specificities of the application scenario. In this study, we discuss the potential benefits and identify four key research challenges of a promising data augmentation approach, namely image combination methodologies, such as CutMix, for metaplasia detection and localisation in gastric endoscopy imaging modalities.
2023
Autores
Gaudio, A; Giordano, N; Coimbra, MT; Kjaergaard, B; Schmidt, SE; Renna, F;
Publicação
Computing in Cardiology, CinC 2023, Atlanta, GA, USA, October 1-4, 2023
Abstract
2023
Autores
Martins, ML; Pedroso, M; Libânio, D; Dinis Ribeiro, M; Coimbra, M; Renna, F;
Publicação
2023 45TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY, EMBC
Abstract
Gastric Intestinal Metaplasia (GIM) is one of the precancerous conditions in the gastric carcinogenesis cascade and its optical diagnosis during endoscopic screening is challenging even for seasoned endoscopists. Several solutions leveraging pre-trained deep neural networks (DNNs) have been recently proposed in order to assist human diagnosis. In this paper, we present a comparative study of these architectures in a new dataset containing GIM and non-GIM Narrow-band imaging still frames. We find that the surveyed DNNs perform remarkably well on average, but still measure sizeable interfold variability during cross-validation. An additional ad-hoc analysis suggests that these baseline architectures may not perform equally well at all scales when diagnosing GIM.
2023
Autores
Silva, A; Teixeira, R; Fontes Carvalho, R; Coimbra, M; Renna, F;
Publicação
2023 45TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY, EMBC
Abstract
In this paper we study the heart sound segmentation problem using Deep Neural Networks. The impact of available electrocardiogram (ECG) signals in addition to phonocardiogram (PCG) signals is evaluated. To incorporate ECG, two different models considered, which are built upon a 1D U-net - an early fusion one that fuses ECG in an early processing stage, and a late fusion one that averages the probabilities obtained by two networks applied independently on PCG and ECG data. Results show that, in contrast with traditional uses of ECG for PCG gating, early fusion of PCG and ECG information can provide more robust heart sound segmentation. As a proof of concept, we use the publicly available PhysioNet dataset. Validation results provide, on average, a sensitivity of 97.2%, 94.5%, and 95.6% and a Positive Predictive Value of 97.5%, 96.2%, and 96.1% for Early-fusion, Late-fusion, and unimodal (PCG only) models, respectively, showing the advantages of combining both signals at early stages to segment heart sounds.
2023
Autores
Domingues, R; Nunes, F; Mancio, J; Fontes Carvalho, R; Coimbra, M; Pedrosa, J; Renna, F;
Publicação
2023 45TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY, EMBC
Abstract
The use of contrast-enhanced computed tomography (CTCA) for detection of coronary artery disease (CAD) exposes patients to the risks of iodine contrast-agents and excessive radiation, increases scanning time and healthcare costs. Deep learning generative models have the potential to artificially create a pseudo-enhanced image from non-contrast computed tomography (CT) scans. In this work, two specific models of generative adversarial networks (GANs) - the Pix2Pix-GAN and the Cycle-GAN - were tested with paired non-contrasted CT and CTCA scans from a private and public dataset. Furthermore, an exploratory analysis of the trade-off of using 2D and 3D inputs and architectures was performed. Using only the Structural Similarity Index Measure (SSIM) and the Peak Signal-to-Noise Ratio (PSNR), it could be concluded that the Pix2Pix-GAN using 2D data reached better results with 0.492 SSIM and 16.375 dB PSNR. However, visual analysis of the output shows significant blur in the generated images, which is not the case for the Cycle-GAN models. This behavior can be captured by the evaluation of the Fr ' echet Inception Distance (FID), that represents a fundamental performance metric that is usually not considered by related works in the literature.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.