Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por CRACS

2024

Hardware Security for Internet of Things Identity Assurance

Autores
Cirne, A; Sousa, PR; Resende, JS; Antunes, L;

Publicação
IEEE COMMUNICATIONS SURVEYS AND TUTORIALS

Abstract
With the proliferation of Internet of Things (IoT) devices, there is an increasing need to prioritize their security, especially in the context of identity and authentication mechanisms. However, IoT devices have unique limitations in terms of computational capabilities and susceptibility to hardware attacks, which pose significant challenges to establishing strong identity and authentication systems. Paradoxically, the very hardware constraints responsible for these challenges can also offer potential solutions. By incorporating hardware-based identity implementations, it is possible to overcome computational and energy limitations, while bolstering resistance against both hardware and software attacks. This research addresses these challenges by investigating the vulnerabilities and obstacles faced by identity and authentication systems in the IoT context, while also exploring potential technologies to address these issues. Each identified technology underwent meticulous investigation, considering known security attacks, implemented countermeasures, and an assessment of their pros and cons. Furthermore, an extensive literature survey was conducted to identify instances where these technologies have effectively supported device identity. The research also includes a demonstration that evaluates the effectiveness of hardware trust anchors in mitigating various attacks on IoT identity. This empirical evaluation provides valuable insights into the challenges developers encounter when implementing hardware-based identity solutions. Moreover, it underscores the substantial value of these solutions in terms of mitigating attacks and developing robust identity frameworks. By thoroughly examining vulnerabilities, exploring technologies, and conducting empirical evaluations, this research contributes to understanding and promoting the adoption of hardware-based identity and authentication systems in secure IoT environments. The findings emphasize the challenges faced by developers and highlight the significance of hardware trust anchors in enhancing security and facilitating effective identity solutions.

2024

TorKameleon: Improving Tor's Censorship Resistance with K-anonymization and Media-based Covert Channels

Autores
Vilalonga, A; Resende, JS; Domingos, H;

Publicação
2023 IEEE 22ND INTERNATIONAL CONFERENCE ON TRUST, SECURITY AND PRIVACY IN COMPUTING AND COMMUNICATIONS, TRUSTCOM, BIGDATASE, CSE, EUC, ISCI 2023

Abstract
Anonymity networks like Tor significantly enhance online privacy but are vulnerable to correlation attacks by state-level adversaries. While covert channels encapsulated in media protocols, particularly WebRTC-based encapsulation, have demonstrated effectiveness against passive traffic correlation attacks, their resilience against active correlation attacks remains unexplored, and their compatibility with Tor has been limited. This paper introduces TorKameleon, a censorship evasion solution designed to protect Tor users from both passive and active correlation attacks. TorKameleon employs K-anonymization techniques to fragment and reroute traffic through multiple TorKameleon proxies, while also utilizing covert WebRTC-based channels or TLS tunnels to encapsulate user traffic.

2024

Implications of seasonal and daily variation on methane and ammonia emissions from naturally ventilated dairy cattle barns in a Mediterranean climate: A two-year study

Autores
Rodrigues, ARF; Silva, ME; Silva, VF; Maia, MRG; Cabrita, ARJ; Trindade, H; Fonseca, AJM; Pereira, JLS;

Publicação
SCIENCE OF THE TOTAL ENVIRONMENT

Abstract
Seasonal and daily variations of gaseous emissions from naturally ventilated dairy cattle barns are important figures for the establishment of effective and specific mitigation plans. The present study aimed to measure methane (CH4) and ammonia (NH3) emissions in three naturally ventilated dairy cattle barns covering the four seasons for two consecutive years. In each barn, air samples from five indoor locations were drawn by a multipoint sampler to a photoacoustic infrared multigas monitor, along with temperature and relative humidity. Milk production data were also recorded. Results showed seasonal differences for CH4 and NH3 emissions in the three barns with no clear trends within years. Globally, diel CH4 emissions increased in the daytime with high intra-hour variability. The average hourly CH4 emissions (g h-1 livestock unit- 1 (LU)) varied from 8.1 to 11.2 and 6.2 to 20.3 in the dairy barn 1, from 10.1 to 31.4 and 10.9 to 22.8 in the dairy barn 2, and from 1.5 to 8.2 and 13.1 to 22.1 in the dairy barn 3, respectively, in years 1 and 2. Diel NH3 emissions highly varied within hours and increased in the daytime. The average hourly NH3 emissions (g h-1 LU-1) varied from 0.78 to 1.56 and 0.50 to 1.38 in the dairy barn 1, from 1.04 to 3.40 and 0.93 to 1.98 in the dairy barn 2, and from 0.66 to 1.32 and 1.67 to 1.73 in the dairy barn 3, respectively, in years 1 and 2. Moreover, the emission factors of CH4 and NH3 were 309.5 and 30.6 (g day- 1 LU-1), respectively, for naturally ventilated dairy cattle barns. Overall, this study provided a detailed characterization of seasonal and daily gaseous emissions variations highlighting the need for future longitudinal emission studies and identifying an opportunity to better adequate the existing mitigation strategies according to season and daytime.

2024

On the Use of VGs for Feature Selection in Supervised Machine Learning - A Use Case to Detect Distributed DoS Attacks

Autores
Lopes, J; Partida, A; Pinto, P; Pinto, A;

Publicação
OPTIMIZATION, LEARNING ALGORITHMS AND APPLICATIONS, PT I, OL2A 2023

Abstract
Information systems depend on security mechanisms to detect and respond to cyber-attacks. One of the most frequent attacks is the Distributed Denial of Service (DDoS): it impairs the performance of systems and, in the worst case, leads to prolonged periods of downtime that prevent business processes from running normally. To detect this attack, several supervised Machine Learning (ML) algorithms have been developed and companies use them to protect their servers. A key stage in these algorithms is feature pre-processing, in which, input data features are assessed and selected to obtain the best results in the subsequent stages that are required to implement supervised ML algorithms. In this article, an innovative approach for feature selection is proposed: the use of Visibility Graphs (VGs) to select features for supervised machine learning algorithms used to detect distributed DoS attacks. The results show that VG can be quickly implemented and can compete with other methods to select ML features, as they require low computational resources and they offer satisfactory results, at least in our example based on the early detection of distributed DoS. The size of the processed data appears as the main implementation constraint for this novel feature selection method.

2024

Use of Visibility Graphs for the Early Detection of DoS Attacks

Autores
Lopes, J; Pinto, P; Partida, A; Pinto, A;

Publicação
2024 IEEE INTERNATIONAL CONFERENCE ON CYBER SECURITY AND RESILIENCE, CSR

Abstract
The world economy depends on information systems. Business value resides in the data stored on Information Technology (IT) systems and on the processes run with those data. Malicious actors target these IT systems to extract value out of them using different cyberattacks. Denial of Service (DoS) attacks are a common and harmful method to render IT systems connected to the Internet and, consequently, business processes running on top of them, unavailable. Cybersecurity researchers in the industry and academia are in search of early warning and detection systems to detect and mitigate these DoS attacks. This article proposes a novel early detection strategy for DoS attacks based on the information provided by Horizontal Visibility Graphs (HVG) and Natural Visibility Graphs (VG) obtained out of the network flows monitored at the receiving end of the attack. From the primary results obtained, this strategy can detect a DoS attack under 70ms and 30 packets. These results point out that the application HVGs and VGs is a relevant and promising research direction to prevent or mitigate the impact of a DoS attack.

2024

Utility Function for Assessing the Cost of Recovering from Ransomware Attacks

Autores
Pinto, L; Pinto, P; Pinto, A;

Publicação
OPTIMIZATION, LEARNING ALGORITHMS AND APPLICATIONS, OL2A 2024, PT II

Abstract
Nowadays ransomware attacks have become one of the main problems organizations face. The threat of ransomware attacks, with their capacity to paralyze entire organizations, creates the need to develop a ransomware recovery utility function to help further prepare for the impact of such attacks and enhance the organization's knowledge and perception of risk. This work proposes a ransomware recovery utility function that aims to estimate the impact of a ransomware attack measured in manpower hours till recovery and taking into account different devices and different scenarios.

  • 14
  • 207