2012
Autores
Fonseca, NA; Santos Costa, V; Camacho, R;
Publicação
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Abstract
"Traditional" clustering, in broad sense, aims at organizing objects into groups (clusters) whose members are "similar" among them and are "dissimilar" to objects belonging to the other groups. In contrast, in conceptual clustering the underlying structure of the data together with the description language which is available to the learner is what drives cluster formation, thus providing intelligible descriptions of the clusters, facilitating their interpretation. We present a novel conceptual clustering system for multi-relational data, based on the popular k?-?medoids algorithm. Although clustering is, generally, not straightforward to evaluate, experimental results on several applications show promising results. Clusters generated without class information agree very well with the true class labels of cluster's members. Moreover, it was possible to obtain intelligible and meaningful descriptions of the clusters. © 2012 Springer-Verlag Berlin Heidelberg.
2012
Autores
Acar, UA; Costa, VS;
Publicação
DAMP
Abstract
2012
Autores
Dovier, A; Costa, VS;
Publicação
ICLP (Technical Communications)
Abstract
2012
Autores
Acar, U; Costa, VS;
Publicação
Conference Record of the Annual ACM Symposium on Principles of Programming Languages
Abstract
2012
Autores
Ferreira, CA; Gama, J; Costa, VS;
Publicação
COMPUTER AND INFORMATION SCIENCES II
Abstract
In this work we present XmuSer, a multi-relational framework suitable to explore temporal patterns available in multi-relational databases. xMuS er's main idea consists of exploiting frequent sequence mining, using an efficient and direct method to learn temporal patterns in the form of sequences. Grounded on a coding methodology and on the efficiency of sequence miners, we find the most interesting sequential patterns available and then map these findings into a new table, which encodes the multi-relational timed data using sequential patterns. In the last step of our framework, we use an ILP algorithm to learn a theory on the enlarged relational database that consists on the original multi-relational database and the new sequence relation. We evaluate our framework by addressing three classification problems.
2012
Autores
Ferreira, CA; Gama, J; Santos Costa, V;
Publicação
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Abstract
This work presents an optimized version of XMuSer, an ILP based framework suitable to explore temporal patterns available in multi-relational databases. XMuSer's main idea consists of exploiting frequent sequence mining, an efficient method to learn temporal patterns in the form of sequences. XMuSer framework efficiency is grounded on a new coding methodology for temporal data and on the use of a predictive sequence miner. The frameworks selects and map the most interesting sequential patterns into a new table, the sequence relation. In the last step of our framework, we use an ILP algorithm to learn a classification theory on the enlarged relational database that consists of the original multi-relational database and the new sequence relation. We evaluate our framework by addressing three classification problems and map each one of three different types of sequential patterns: frequent, closed or maximal. The experiments show that our ILP based framework gains both from the descriptive power of the ILP algorithms and the efficiency of the sequential miners. © 2012 Springer-Verlag Berlin Heidelberg.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.