2015
Autores
Rodrigues, PP; Santos, DF; Leite, L;
Publicação
2015 IEEE 28TH INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS (CBMS)
Abstract
Obstructive Sleep Apnea (OSA) is a disease that affects approximately 4% of men and 2% of women worldwide but is still underestimated and underdiagnosed. The standard method for assessing this index, and therefore defining the OSA diagnosis, is polysomnography (PSG). Previous work developed relevant Bayesian network models but those were based only on variables univariatedly associated with the outcome, yielding a bias on the possible knowledge representation of the models. The aim of this work was to develop and validate new Bayesian network decision support models that could be used during sleep consult to assess the need for PSG. Bayesian models were developed using a) expert opinion, b) hill-climbing, c) naive Bayes and d) TAN structures. Resulting models validity was assessed with in-sample AUC and stratified cross-validation, also comparing with previously published model. Overall, models achieved good discriminative power (AUC>70%) and validity (measures consistently above 70%). Main conclusions are a) the need to integrate a wider range of variables in the final models and b) the support of using Bayesian networks in the diagnosis of obstructive sleep apnea.
2017
Autores
Ferreira Santos, D; Rodrigues, PP;
Publicação
2017 IEEE 30TH INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS (CBMS)
Abstract
In obstructive sleep apnea, respiratory effort is maintained but ventilation decreases/disappears because of the partial/total occlusion in the upper airway. It affects about 4% of men and 2% of women in the world population. The aim was to define an auxiliary diagnostic method that can support the decision to perform polysomnography (standard test), based on risk and diagnostic factors. Our sample performed polysomnography between January and May 2015. Two Bayesian classifiers were used to build the models: Naive Bayes (NB) and Tree augmented Naive Bayes (TAN), using all 39 variables or just a selection of 13. Area under the ROC curve, sensitivity, specificity, predictive values were evaluated using cross-validation. From a collected total of 241 patients, only 194 fulfill the inclusion criteria. 123 (63%) were male, with a mean age of 58 years old. 66 (34%) patients had a normal result and 128 (66%) a diagnostic of obstructive sleep apnea. The AUCs for each model were: NB39 - 72%; TAN39 - 79%; NB13 - 75% and TAN13 - 75%. The high (34%) proportion of normal results confirm the need for a pre-evaluation prior to polysomnography. The constant seeking of a validated model to screen patients with suspicion of obstructive sleep apnea is essential, especially at the level of primary care.
2017
Autores
Rodrigues, PP; Santos, DF; Silva, A; Polónia, J; Vaz, IR;
Publicação
Artificial Intelligence in Medicine - 16th Conference on Artificial Intelligence in Medicine, AIME 2017, Vienna, Austria, June 21-24, 2017, Proceedings
Abstract
In pharmacovigilance, reported cases are considered suspected adverse drug reactions (ADR). Health authorities have thus adopted structured causality assessment methods, allowing the evaluation of the likelihood that a medicine was the causal agent of an adverse reaction. The aim of this work was to develop and validate a new causality assessment support system used in a regional pharmacovigilance centre. A Bayesian network was developed, for which the structure was defined by an expert, aiming at implementing the current guidelines for causality assessment, while the parameters were learnt from 593 completely-filled ADR reports evaluated by the Portuguese Northern Pharmacovigilance Centre expert between 2000 and 2012. Precision, recall and time to causality assessment (TTA) was evaluated, according to the WHO causality assessment guidelines, in a retrospective cohort of 466 reports (April to September 2014) and a prospective cohort of 1041 reports (January to December 2015). Results show that the network was able to easily identify the higher levels of causality (recall above 80%), although strugling to assess reports with a lower level of causality. Nonetheless, the median (Q1:Q3) TTA was 4 (2:8) days using the network and 8 (5:14) days using global introspection, meaning the network allowed a faster time to assessment, which has a procedural deadline of 30 days, improving daily activities in the centre.
2018
Autores
Santos, DF; Soares, MM; Rodrigues, PP;
Publicação
Building Continents of Knowledge in Oceans of Data: The Future of Co-Created eHealth - Proceedings of MIE 2018, Medical Informatics Europe, Gothenburg, Sweden, April 24-26, 2018
Abstract
Numerous diagnostic decisions are made every day by healthcare professionals. Bayesian networks can provide a useful aid to the process, but learning their structure from data generally requires the absence of missing data, a common problem in medical data. We have studied missing data imputation using a step-wise nearest neighbors' algorithm, which we recommended given its limited impact on the assessed validity of structure learning Bayesian network classifiers for Obstructive Sleep Apnea diagnosis. © 2018 European Federation for Medical Informatics (EFMI) and IOS Press.
2018
Autores
Santos, DF; Rodrigues, PP;
Publicação
31st IEEE International Symposium on Computer-Based Medical Systems, CBMS 2018, Karlstad, Sweden, June 18-21, 2018
Abstract
Obstructive sleep apnea (OSA) is a significant sleep problem with various clinical presentations that have not been formally characterized. This poses critical challenges for its recognition, resulting in missed or delayed diagnosis. Recently, cluster analysis has been used in different clinical domains, particularly within numeric variables. We applied an extension of k-means to be used in categorical variables: k-modes, to identify groups of OSA patients. Demographic, physical examination, clinical history, and comorbidities characterization variables (n=46) were collected from 318 patients; missing values were all imputed with k-nearest neighbors (k-NN). Feature selection, through Chi-square test, was executed and 17 variables were inserted in cluster analysis, resulting in three clusters. Cluster 1 having an age between 65 and 90 years (54%), 78% of males, with the presence of diabetes and gastroesophageal reflux, and high OSA prevalence; Cluster 2 presented a lower percentage of OSA (46%), with middle-aged women without comorbidities, but with gastroesophageal reflux; and Cluster 3 was very similar to cluster 1, only differing in age (45-64) and comorbidities were not present. Our results suggest that there are different groups of OSA patients, creating the need to rethink the baseline characteristics of these patients before being sent to perform polysomnography (gold standard exam for diagnosis). © 2018 IEEE.
2018
Autores
Ferreira Santos, D; Pereira Rodrigues, P;
Publicação
DECISION SUPPORT SYSTEMS AND EDUCATION: HELP AND SUPPORT IN HEALTHCARE
Abstract
The varied phenotypes of obstructive sleep apnea (OSA) poses critical challenges, resulting in missed or delayed diagnosis. In this work, we applied k-modes, aiming to identify groups of OSA patients, based on demographic, physical examination, clinical history, and comorbidities characterization variables (n=41) collected from 318 patients. Missing values were imputed with k-nearest neighbours (k-NN) and chi-square test was held. Thirteen variables were inserted in cluster analysis, resulting in three clusters. Cluster 1 were middle-aged men, while Cluster 3 were the oldest men and Cluster 2 mainly middle-aged women. Cluster 3 weighted the most, whereas Cluster 1 weighted the least. The same effect was described in increased neck circumference. The percentages of variables driving sleepiness, congestive heart failure, arrhythmias and pulmonary hypertension were very low (<20%) and OSA severity was more common in mild level. Our results suggest that it is possible to phenotype OSA patients in an objective way, as also, different (although not considered innovative) visualizations improve the recognition of this common sleep pathology.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.