Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por Daniela Santos

2018

Causality assessment of adverse drug reaction reports using an expert-defined Bayesian network

Autores
Rodrigues, PP; Ferreira Santos, D; Silva, A; Polonia, J; Ribeiro Vaza, I;

Publicação
ARTIFICIAL INTELLIGENCE IN MEDICINE

Abstract
In pharmacovigilance, reported cases are considered suspected adverse drug reactions (ADR). Health authorities have thus adopted structured causality assessment methods, allowing the evaluation of the likelihood that a drug was the causal agent of an adverse reaction. The aim of this work was to develop and validate a new causality assessment support system used in a regional pharmacovigilance centre. A Bayesian network was developed, for which the structure was defined by experts while the parameters were learnt from 593 completely filled ADR reports evaluated by the Portuguese Northern Pharmacovigilance Centre medical expert between 2000 and 2012. Precision, recall and time to causality assessment (TTA) was evaluated, according to the WHO causality assessment guidelines, in a retrospective cohort of 466 reports (April-September 2014) and a prospective cohort of 1041 reports (January-December 2015). Additionally, a simplified assessment matrix was derived from the model, enabling its preliminary direct use by notifiers. Results show that the network was able to easily identify the higher levels of causality (recall above 80%), although struggling to assess reports with a lower level of causality. Nonetheless, the median (Q1:Q3) ITA was 4 (2:8) days using the network and 8 (5:14) days using global introspection, meaning the network allowed a faster time to assessment, which has a procedural deadline of 30 days, improving daily activities in the centre. The matrix expressed similar validity, allowing an immediate feedback to the notifiers, which may result in better future engagement of patients and health professionals in the pharmacovigilance system.

2018

A clinical risk matrix for obstructive sleep apnea using Bayesian network approaches

Autores
Ferreira-Santos, D; Rodrigues, PP;

Publicação
International Journal of Data Science and Analytics

Abstract

2019

A clinical risk matrix for obstructive sleep apnea using Bayesian network approaches

Autores
Santos, DF; Rodrigues, PP;

Publicação
Int. J. Data Sci. Anal.

Abstract
In obstructive sleep apnea, respiratory effort is maintained but ventilation decreases/disappears due to upper-airway partial/total occlusion. This condition affects about 4% of men and 2% of women worldwide. This study aimed to define an auxiliary diagnostic method that can support the decision to perform polysomnography, based on risk and diagnostic factors. Our sample performed polysomnography between January and May 2015. Two Bayesian classifiers were used to build the models: Naïve Bayes and Tree Augmented Naïve Bayes, using 38 variables identified by literature review or just a selection of 6. Area under the ROC curve, sensitivity, specificity and predictive values were evaluated using leave-one-out and cross-validation techniques. From a total of 241 patients, only 194 fulfilled the inclusion criteria, 123 (63%) were male, with a mean age of 58 years, 66 (34%) patients had a normal result and 128 (66%) a diagnosis of obstructive sleep apnea. The cross-validated AUCs for each model were: NB38: 69.2%; TAN38: 69.0%; NB6: 74.6% and TAN6: 63.6%. Regarding risk matrix, female gender presented a starting rate of 8%, comparing to 20% in male gender, almost 3 times higher. The high (34%) proportion of normal results confirms the need for a pre-evaluation prior to polysomnography, making the search for a validated model to screen patients with suspicion of obstructive sleep apnea essential, especially at primary care level.

2019

Correction to: A clinical risk matrix for obstructive sleep apnea using Bayesian network approaches

Autores
Santos, DF; Rodrigues, PP;

Publicação
Int. J. Data Sci. Anal.

Abstract

2020

Enhancing obstructive sleep apnea diagnosis with screening through disease phenotypes: a diagnostic research design (Preprint)

Autores
Ferreira-Santos, D; Rodrigues, PP;

Publicação
Journal of Medical Internet Research

Abstract

2021

Enhancing Obstructive Sleep Apnea Diagnosis With Screening Through Disease Phenotypes: Algorithm Development and Validation

Autores
Ferreira Santos, D; Rodrigues, PP;

Publicação
JMIR MEDICAL INFORMATICS

Abstract
Background: The American Academy of Sleep Medicine guidelines suggest that clinical prediction algorithms can be used in patients with obstructive sleep apnea (OSA) without replacing polysomnography, which is the gold standard. Objective: This study aims to develop a clinical decision support system for OSA diagnosis according to its standard definition (apnea-hypopnea index plus symptoms), identifying individuals with high pretest probability based on risk and diagnostic factors. Methods: A total of 47 predictive variables were extracted from a cohort of patients who underwent polysomnography. A total of 14 variables that were univariately significant were then used to compute the distance between patients with OSA, defining a hierarchical clustering structure from which patient phenotypes were derived and described. Affinity from individuals at risk of OSA phenotypes was later computed, and cluster membership was used as an additional predictor in a Bayesian network classifier (model B). Results: A total of 318 patients at risk were included, of whom 207 (65.1%) individuals were diagnosed with OSA (111, 53.6% with mild; 50, 24.2% with moderate; and 46, 22.2% with severe). On the basis of predictive variables, 3 phenotypes were defined (74/207, 35.7% low; 104/207, 50.2% medium; and 29/207, 14.1% high), with an increasing prevalence of symptoms and comorbidities, the latter describing older and obese patients, and a substantial increase in some comorbidities, suggesting their beneficial use as combined predictors (median apnea-hypopnea indices of 10, 14, and 31, respectively). Cross-validation results demonstrated that the inclusion of OSA phenotypes as an adjusting predictor in a Bayesian classifier improved screening specificity (26%, 95% CI 24-29, to 38%, 95% CI 35-40) while maintaining a high sensitivity (93%, 95% CI 91-95), with model B doubling the diagnostic model effectiveness (diagnostic odds ratio of 8.14). Conclusions: Defined OSA phenotypes are a sensitive tool that enhances our understanding of the disease and allows the derivation of a predictive algorithm that can clearly outperform symptom-based guideline recommendations as a rule-out approach for screening.

  • 2
  • 5