2025
Autores
Fernandes, F; Lopes, JP; Moreira, C;
Publicação
IET GENERATION TRANSMISSION & DISTRIBUTION
Abstract
This work proposes an innovative methodology for the optimal placement of grid-forming converters (GFM) in converter-dominated grids while accounting for multiple stability classes. A heuristic-based methodology is proposed to solve an optimisation problem whose objective function encompasses up to 4 stability indices obtained through the simulation of a shortlist of disturbances. The proposed methodology was employed in a modified version of the 39-bus test system, using DigSILENT Power Factory as the simulation engine. First, the GFM placement problem is solved individually for the different stability classes to highlight the underlying physical phenomena that explain the optimality of the solutions and evidence the need for a multi-class approach. Second, a multi-class approach that combines the different stability indices through linear scalarisation (weights), using the normalised distance of each index to its limit as a way to define its importance, is adopted. For all the proposed fitness function formulations, the method successfully converged to a balanced solution among the various stability classes, thereby enhancing overall system stability.
2025
Autores
Gonçalves, C; Bessa, RJ; Teixeira, T; Vinagre, J;
Publicação
IEEE TRANSACTIONS ON SUSTAINABLE ENERGY
Abstract
Accurate power forecasting from renewable energy sources (RES) is crucial for integrating additional RES capacity into the power system and realizing sustainability goals. This work emphasizes the importance of integrating decentralized spatio-temporal data into forecasting models. However, decentralized data ownership presents a critical obstacle to the success of such spatio-temporal models, and incentive mechanisms to foster data-sharing need to be considered. The main contributions are a) a comparative analysis of the forecasting models, advocating for efficient and interpretable spline LASSO regression models, and b) a bidding mechanism within the data/analytics market to ensure fair compensation for data providers and enable both buyers and sellers to express their data price requirements. Furthermore, an incentive mechanism for time series forecasting is proposed, effectively incorporating price constraints and preventing redundant feature allocation. Results show significant accuracy improvements and potential monetary gains for data sellers. For wind power data, an average root mean squared error improvement of over 10% was achieved by comparing forecasts generated by the proposal with locally generated ones.
2025
Autores
Silva, CAM; Bessa, RJ;
Publicação
APPLIED ENERGY
Abstract
The electrification of the transport sector is a critical element in the transition to a low-emissions economy, driven by the widespread adoption of electric vehicles (EV) and the integration of renewable energy sources (RES). However, managing the increasing demand for EV charging infrastructure while meeting carbon emission reduction targets is a significant challenge for charging station operators. This work introduces a novel carbon-aware dynamic pricing framework for EV charging, formulated as a chance-constrained optimization problem to consider forecast uncertainties in RES generation, load, and grid carbon intensity. The model generates day-ahead dynamic tariffs for EV drivers with a certain elastic behavior while optimizing costs and complying with a carbon emissions budget. Different types of budgets for Scope 2 emissions (indirect emissions of purchased electricity consumed by a company) are conceptualized and demonstrate the advantages of a stochastic approach over deterministic models in managing emissions under forecast uncertainty, improving the reduction rate of emissions per feasible day of optimization by 24 %. Additionally, a surrogate machine learning model is proposed to approximate the outcomes of stochastic optimization, enabling the application of state-of-the-art explainability techniques to enhance understanding and communication of dynamic pricing decisions under forecast uncertainty. It was found that lower tariffs are explained, for instance, by periods of higher renewable energy availability and lower market prices and that the most important feature was the hour of the day.
2025
Autores
Kazemi-Robati, E; Varotto, S; Silva, B; Temiz, I;
Publicação
APPLIED ENERGY
Abstract
With the recent advancements in the development of hybrid offshore parks and the expected large-scale implementation of them in the near future, it becomes paramount to investigate proper energy management strategies to improve the integrability of these parks into the power systems. This paper addresses a multiobjective energy management approach using a hybrid energy storage system comprising batteries and hydrogen/fuel-cell systems applied to multi-source wind-wave and wind-solar offshore parks to maximize the delivered energy while minimizing the variations of the power output. To find the solution of the optimization problem defined for energy management, a strategy is proposed based on the examination of a set of weighting factors to form the Pareto front while the problem associated with each of them is assessed in a mixed-integer linear programming framework. Subsequently, fuzzy decision making is applied to select the final solution among the ones existing in the Pareto front. The studies are implemented in different locations considering scenarios for electrical system limitation and the place of the storage units. According to the results, applying the proposed multiobjective framework successfully addresses the enhancement of energy delivery and the decrease in power output fluctuations in the hybrid offshore parks across all scenarios of electrical system limitation and combinational storage locations. Based on the results, in addition to the increase in delivered energy, a decrease in power variations by around 40 % up to over 80 % is observed in the studied cases.
2025
Autores
Costa, VBF; Soares, T; Bitencourt, L; Dias, BH; Deccache, E; Silva, BMA; Bonatto, B; Filho, WF; Faria, AS;
Publicação
Renewable and Sustainable Energy Reviews
Abstract
Community-based electricity markets, which are defined as groups of members that share common interests in renewable distributed generation, allow prosumers to embrace more active roles by opening up several opportunities for trading electricity. At the same time, such markets may favor conventional consumers by allowing them to choose cheaper electricity providers. Due to trends in power sector modernization, community-based electricity markets are of great research interest, and there are already some associated models. However, there is a research gap in searching for integrated and holistic approaches that go beyond economic aspects, consider social and environmental aspects, and assume the balanced co-existence of community-based and conventional markets. This work fills this critical research gap by adapting/applying the optimized tariff model, Bass diffusion model, life cycle assessment, and multi-objective optimization to the context of community-based markets. Results indicate that favoring conventional markets in the short term and community-based markets in the medium term is beneficial. Moreover, regulated tariffs should increase slightly in the short/medium-term to accommodate DG growth. Additionally, community-based markets can decrease electricity expenses by around 13.6 % considering the market participants. Thus, such markets can be significantly beneficial in mitigating energy poverty. © 2025 Elsevier Ltd
2025
Autores
Rasul, A; Teixeira, R; Baptista, J;
Publicação
Energies
Abstract
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.