Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por CPES

2020

Local Market for TSO and DSO Reactive Power Provision Using DSO Grid Resources

Autores
Retorta, F; Aguiar, J; Rezende, I; Villar, J; Silva, B;

Publicação
ENERGIES

Abstract
This paper proposes a near to real-time local market to provide reactive power to the transmission system operator (TSO), using the resources connected to a distribution grid managed by a distribution system operator (DSO). The TSO publishes a requested reactive power profile at the TSO-DSO interface for each time-interval of the next delivery period, so that market agents (managing resources of the distribution grid) can prepare and send their bids accordingly. DSO resources are the first to be mobilized, and the remaining residual reactive power is supplied by the reactive power flexibility offered in the local reactive market. Complex bids (with non-curtailability conditions) are supported to provide flexible ways of bidding fewer flexible assets (such as capacitor banks). An alternating current (AC) optimal power flow (OPF) is used to clear the bids by maximizing the social welfare to supply the TSO required reactive power profile, subject to the DSO grid constraints. A rolling window mechanism allows a continuous dispatching of reactive power, and the possibility of adapting assigned schedules to real time constraints. A simplified TSO-DSO cost assignment of the flexible reactive power used is proposed to share for settlement purposes.

2020

Flexibility hub – Flexibility provision by decentralised assets connected to the distribution grid

Autores
Filipe, NL; Marques, M; Villar, J; Silva, B; Moreira, J; Louro, M; Retorta, F; Aguiar, J; Rezende, I; Simões, T; Marinho, N;

Publicação
IET Conference Publications

Abstract
EU-SysFlex H2020 project aims at developing and testing innovative tools for the integration of high levels (above 50%) of renewable energy sources (RES) in the pan-European Electricity system. Those high levels of RES will increase the need for new sources of flexibility to support the system services, since there will be a decreasing number of conventional power plants connected to the grid, traditionally the main providers of these services. In this context, this study describes the Flexibility Hub (FlexHub) concept, part of the EU-SysFlex Portuguese demonstrator, consisting of a platform of tools managed by the distribution system operator to facilitate market-based flexibility provision to the transmission system operator (TSO) using resources connected to the distribution system. The FlexHub includes the provision of active power flexibility to the TSO (with an extended restoration reserve market concept), an essential tool to help the TSO balancing the grid, being a replicable concept that will become increasingly relevant in a future with a high share of decentralised assets connected to the distribution grids.

2020

Operational optimisation framework improving DSO/TSO coordination demonstrated in real network operation

Autores
Stock, DS; Löwer, L; Harms, Y; Wende Von Berg, S; Braun, M; Wang, Z; Albers, W; Calpe, C; Staudt, M; Silva, B; Retorta, F; Silva, JV; Carvalho, L;

Publicação
IET Conference Publications

Abstract
The study at hand describes the state of the art regulatory framework for managing the distribution system operator (DSO)/transmission system operator (TSO) interface including information about the available flexibility data and access rights of the different grid operators. It describes a possible future procedure to manage this interface using software tools to support this coordination performing grid analysis and providing active as well as reactive power flexibility information at several TSO–DSO interconnection points. The proposed study gives a short overview of two optimisation approaches/software tools with different application functionalities, developed and adapted to meet the demands coming up with such tasks, performed within the European project ‘EU-SysFlex’. Both tools contribute to the objective of optimising available flexibility resources connected to meshed distribution grids with multiple grid connection points to the transmission grid. The investigations/calculations are performed using a real existing high-voltage grid of MITNETZ STROM. Using the outputs, provided by both tools, the demonstrator aims at providing beneficiary results for the discussion of how to evolve the regulatory framework. The functionality of the developed algorithms of both optimisation tools is evaluated and investigated by means of a live field test.

2020

Reactive power provision using distribution grid resources: flexibility hub use case

Autores
Moreira, J; Louro, M; Simões, TF; Villar, J; Fulgêncio, N; Silva, B; Retorta, F; Aguiar, J; Rezende, I; Filipe, NL; Marinho, N;

Publicação
IET Conference Publications

Abstract
With the energy transition at sight and the EU renewable energy source integration ambition, the EU-SysFlex project aims at defining a set of advancements in the electric system that drives us towards that direction. With the increasing decentralisation and granularity of the generation facilities, local generation will gain a determinant role in the provision of future local and global systems services. This study presents an overview of a framework for a local market for reactive power control that will be implemented and demonstrated under a real scenario in a Portuguese demo site. The demonstration includes a set of capacitor banks of the distribution system operator (DSO) and two wind farms of a wind power generation operator. This local reactive power market consists of a close to real-time continuous intraday local market managed by the DSO, with 15 min delivery time to increase temporal granularity, and with 7 h delivery horizons with complex bids to allow more flexible assets operation. Market agents can also correct future previously scheduled positions by participating themselves as sellers or buyers of capacitive or inductive reactive power, providing a more flexible framework.

2020

Flexibility Hub’s dynamic equivalent model: improving the representation of the distribution grid for system planning

Autores
Fulgêncio, N; Silva, B; Villar, J; Moreira, C; Marques, M; Marinho, N; Filipe, NL; Moreira, J; Louro, M; Simões, T;

Publicação
IET Conference Publications

Abstract
In an evolving European power system, with increasing shares of renewable energy sources – a high percentage of which connected to the distribution network – an accurate, reliable and up-to-date representation of the distribution network becomes a key tool for transmission and distribution system operators’ coordination. The Flexibility Hub, under development by INESC TEC and EDP, and in the scope of the European Union-funded project EU-SysFlex, offers a service that delivers an enhanced dynamic equivalent model of the distribution network to the transmission system operator. It is a useful tool for planning purposes to enable a better understanding of how the distribution network will behave under large voltage and frequency disturbances at the transmission level. This study describes the overall concept and the methodology, provides an overview of the data management model adopted to interface the involved agents and depicts some relevant scenarios under consideration for testing.

2020

Active Fault Diagnosis Method for Vehicles in Platoon Formation

Autores
Lopes, A; Araujo, RE;

Publicação
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY

Abstract
This paper presents an active fault diagnosis (AFD) method with reduced excitation for detection and identification of sensor faults of vehicles in a platoon formation. By introducing a probing signal into the platooning, it will allow an active excitation of the system, reveling a residual component, with the same frequency, that can be explored to obtain a fault identification of specific system faults. A supervisor is introduced to monitor the platoon behavior and activate the auxiliary input whenever the system natural excitation is insufficient for a clear fault diagnosis. This solution will allow the fault diagnosis to behave as active or passive through the adaptive signal provided by the supervisor. A dual Youla-Jabr-Bongiorno-Kucera (YJBK) matrix transfer function, also known as fault signature matrix (FSM) is investigated to get a fault diagnosis. In order to obtain an online identification of specific faults in the system, a Taylor approximation of the FSM is pursued. Computational simulations with a high-fidelity full-vehicle model, provided by CarSim, are carried out to demonstrate the effectiveness of the proposed active approach. A direct comparison between an active and a passive behavior in the same scenario shows that the active fault diagnosis method outperforms the passive approach whenever the dynamic behavior does not provide sufficient excitation. Furthermore, the excitation supervisor is able to significantly reduce the amount of artificial excitation introduced into the system ensuring a more energy efficient active fault diagnosis.

  • 96
  • 337