2014
Autores
Rouco, J; Novo, J; Campilho, A; Campilho, A;
Publicação
IMAGE ANALYSIS AND RECOGNITION, ICIAR 2014, PT II
Abstract
In order to assess the atherosclerotic plaque disruption risk from B-mode ultrasound images of the carotid, an appropriate normalization of the plaque regions is required. This is usually achieved through the manual selection of two sample regions in the image containing blood and adventitia tissues, which are used as reference. In this work, we propose a new plaque region normalization method that takes advantage of multiple blood and adventitia reference samples per image, and a method for the automatic selection of these reference samples. Several preliminary results are provided in order to demonstrate the possible capabilities of the proposed methods.
2014
Autores
Almeida, VG; Pereira, HC; Pereira, T; Ferreira, LR; Correia, C; Cardoso, J;
Publicação
IFMBE Proceedings
Abstract
The main motivation of this work was to provide a valid contribution for the assessment of the cardiovascular condition by the analysis of several Arterial Pressure Waveform (APW) parameters collected by a new non-invasive device. Three sets of recordings for the carotid pressure waveform at left and right carotid arteries were performed, under standardized conditions, in 20 volunteers by three trained operators. The mean of the inter-operator differences were higher for the right artery, comparatively to the left artery. In this case, an Augmentation Index (AIx) value of -2.31 ± 7.29 % and a Systolic Wave Transit Time (SWTT) value of -12.94 ± 31.46 ms were observed, which are higher than the left measurements, 0.94 ± 7.52 % and -2.96 ± 22.67 ms, respectively. Intra-operator differences were calculated for each of the three sets of measurements and showed good reproducibility. The pulse-by-pulse variability analysis gives very good markers for the Left Ventricular Ejection Time (LVET), Dicrotic Wave Amplitude (DWA), Reflection Wave Amplitude (RWA), Coefficient of Variation (CV) < 10 %, and satisfactory values for the AIx (CV< 30 %). The SWTT and Reflected Wave Transit Time (RWTT) also presented satisfactory results (10 %
2014
Autores
Silva, S; Coelho, L; Frazao, O;
Publicação
MEASUREMENT
Abstract
A gas pressure sensor based on an all-fiber Fabry-Perot interferometer (FFPI) is reported. The sensing head consists of a small section of silica rod spliced with a large offset between two single-mode fibers. The silica rod is used only as mechanical support so that an air cavity can be formed between both SMF. It is shown that the FFPI sensor is sensitive to gas pressure variation and when submitted to different gaseous environments, namely carbon dioxide, nitrogen and oxygen - sensitivities of 6.2, 4.1 and 3.6 nm/MPa, respectively, were attained. The refractive index change on nitrogen environment by means of gas pressure variation was also determined and a sensitivity of 1526 nm/RIU was obtained. The response of the sensing device to temperature variations in air was also studied and a sensitivity of -14 pm/degrees C was attained.
2014
Autores
Pereira, T; Sequeira, M; Vaz, P; Pereira, HC; Correia, C; Cardoso, J; Tomé,;
Publicação
Advances in Optics
Abstract
2014
Autores
Sattar, F; Campilho, A; Kamel, M;
Publicação
IMAGE ANALYSIS AND RECOGNITION, ICIAR 2014, PT II
Abstract
In this paper, an optic disk (OD) localization method is proposed for the retinal images based on a novel patch filtering approach. The patch filtering has been performed sequentially based on clustering in two stages. In the first stage, the patches are selected exploiting an 'isotropic' measure based on the ratio of maximum and minimum eigenvalues of the moment matrix representing the structure tensor. In the second stage, the patch filtering is based on the saliency measure. Finally, the optic disk is located from the centroids of the selected patches. Promising results are obtained for the low-contrast pathological retinal images using STARE database providing high localization accuracy.
2014
Autores
Pereira, T; Santos, I; Oliveira, T; Vaz, P; Pereira, T; Santos, H; Pereira, H; Correia, C; Cardoso, J;
Publicação
MEDICAL ENGINEERING & PHYSICS
Abstract
The pulse pressure waveform has, for long, been known as a fundamental biomedical signal and its analysis is recognized as a non-invasive, simple, and resourceful technique for the assessment of arterial vessels condition observed in several diseases. In the current paper, waveforms from non-invasive optical probe that measures carotid artery distension profiles are compared with the waveforms of the pulse pressure acquired by intra-arterial catheter invasive measurement in the ascending aorta. Measurements were performed in a study population of 16 patients who had undergone cardiac catheterization. The hemodynamic parameters: area under the curve (AUC), the area during systole (AS) and the area during diastole (AD), their ratio (AD/AS) and the ejection time index (ETI), from invasive and non-invasive measurements were compared. The results show that the pressure waveforms obtained by the two methods are similar, with 13% of mean value of the root mean square error (RMSE). Moreover, the correlation coefficient demonstrates the strong correlation. The comparison between the AUCs allows the assessment of the differences between the phases of the cardiac cycle. In the systolic period the waveforms are almost equal, evidencing greatest clinical relevance during this period. Slight differences are found in diastole, probably due to the structural arterial differences. The optical probe has lower variability than the invasive system (13% vs 16%). This study validates the capability of acquiring the arterial pulse waveform with a non-invasive method, using a non-contact optical probe at the carotid site with residual differences from the aortic invasive measurements.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.