Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por BIO

2022

Insomnia and nightmare profiles during the COVID-19 pandemic in Portugal: characterization and associated factors

Autores
Goncalves M.; Henriques A.; Costa A.R.; Correia D.; Severo M.; Severo M.; Lucas R.; Lucas R.; Barros H.; Santos A.C.; Ribeiro A.I.; Rocha A.; Lopes C.; Correia D.; Ramos E.; Gonçalves G.; Barros H.; Araújo J.; Talih M.; Tavares M.; Lunet N.; Meireles P.; Duarte R.; Camacho R.; Fraga S.; Correia S.; Silva S.; Leão T.;

Publicação
SLEEP MEDICINE

Abstract
Objective/background: To describe and characterize insomnia symptoms and nightmare profiles in Portugal during the first six weeks of a national lockdown due to COVID-19. Patients/methods: An open cohort study was conducted to collect information of the general population during the first wave of SARS-CoV-2/COVID-19 pandemic in Portugal. We analyzed data from 5011 participants (>= 16 years) who answered a weekly questionnaire about their well-being. Two questions about the frequency of insomnia and nightmares about COVID-19 were consecutively applied during six weeks (March-May 2020). Latent class analysis was conducted and different insomnia and nightmare profiles were identified. Associations between individual characteristics and both profiles were estimated using odds ratios (ORs) and 95% confidence intervals (CI). Results: Five insomnia (No insomnia, Stable-mild, Decreasing-moderate, Stable-severe, Increasing-severe) and three nightmares profiles (Stable-mild, Stable-moderate, Stable-severe) were identified. Being female, younger, perceiving their income as insufficient and feelings of fear towards COVID-19 were associated with higher odds of insomnia (Women: OR = 6.98 95%CI: 4.18-11.64; >= 60 years: OR = 0.30 95%CI: 0.18-0.53; Insufficient income: adjusted OR (aOR) = 8.413 95% CI: 3.93-16.84; Often presenting fear of being infected with SARS-CoV-2 infection: aOR = 9.13 95%CI: 6.36-13.11), and nightmares (Women: OR = 2.60 95%CI: 1.74-3.86; >= 60 years: OR = 0.45 95%CI: 0.28-0.74; Insufficient income: aOR = 2.60 95%CI: 1.20e5.20; Often/almost always presenting fear of being infected with SARS-CoV-2 infection: aOR = 6.62 95%CI: 5.01-8.74). Having a diagnosis of SARS-CoV-2 virus infection was associated with worse patterns of nightmares about the pandemic. Conclusions: Social and psychological individual factors are important characteristics to consider in the developmentof therapeutic strategies to supportpeoplewithsleep problems during the COVID-19 pandemic.

2022

A data mining approach to classify serum creatinine values in patients undergoing continuous ambulatory peritoneal dialysis

Autores
Brito, C; Esteves, M; Peixoto, H; Abelha, A; Machado, J;

Publicação
WIRELESS NETWORKS

Abstract
Continuous ambulatory peritoneal dialysis (CAPD) is a treatment used by patients in the end-stage of chronic kidney diseases. Those patients need to be monitored using blood tests and those tests can present some patterns or correlations. It could be meaningful to apply data mining (DM) to the data collected from those tests. To discover patterns from meaningless data, it becomes crucial to use DM techniques. DM is an emerging field that is currently being used in machine learning to train machines to later aid health professionals in their decision-making process. The classification process can found patterns useful to understand the patients' health development and to medically act according to such results. Thus, this study focuses on testing a set of DM algorithms that may help in classifying the values of serum creatinine in patients undergoing CAPD procedures. Therefore, it is intended to classify the values of serum creatinine according to assigned quartiles. The better results obtained were highly satisfactory, reaching accuracy rate values of approximately 95%, and low relative absolute error values.

2022

Attention-driven Spatial Transformer Network for Abnormality Detection in Chest X-Ray Images

Autores
Rocha, J; Pereira, SC; Pedrosa, J; Campilho, A; Mendonca, AM;

Publicação
2022 IEEE 35TH INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS (CBMS)

Abstract
Backed by more powerful computational resources and optimized training routines, deep learning models have attained unprecedented performance in extracting information from chest X-ray data. Preceding other tasks, an automated abnormality detection stage can be useful to prioritize certain exams and enable a more efficient clinical workflow. However, the presence of image artifacts such as lettering often generates a harmful bias in the classifier, leading to an increase of false positive results. Consequently, healthcare would benefit from a system that selects the thoracic region of interest prior to deciding whether an image is possibly pathologic. The current work tackles this binary classification exercise using an attention-driven and spatially unsupervised Spatial Transformer Network (STN). The results indicate that the STN achieves similar results to using YOLO-cropped images, with fewer computational expenses and without the need for localization labels. More specifically, the system is able to distinguish between normal and abnormal CheXpert images with a mean AUC of 84.22%.

2022

Development of a Screening Method for Sulfamethoxazole in Environmental Water by Digital Colorimetry Using a Mobile Device

Autores
Peixoto, PS; Carvalho, PH; Machado, A; Barreiros, L; Bordalo, AA; Oliveira, HP; Segundo, MA;

Publicação
CHEMOSENSORS

Abstract
Antibiotic resistance is a major health concern of the 21st century. The misuse of antibiotics over the years has led to their increasing presence in the environment, particularly in water resources, which can exacerbate the transmission of resistance genes and facilitate the emergence of resistant microorganisms. The objective of the present work is to develop a chemosensor for screening of sulfonamides in environmental waters, targeting sulfamethoxazole as the model analyte. The methodology was based on the retention of sulfamethoxazole in disks containing polystyrene divinylbenzene sulfonated sorbent particles and reaction with p-dimethylaminocinnamaldehyde, followed by colorimetric detection using a computer-vision algorithm. Several color spaces (RGB, HSV and CIELAB) were evaluated, with the coordinate a_star, from the CIELAB color space, providing the highest sensitivity. Moreover, in order to avoid possible errors due to variations in illumination, a color palette is included in the picture of the analytical disk, and a correction using the a_star value from one of the color patches is proposed. The methodology presented recoveries of 82-101% at 0.1 mu g and 0.5 mu g of sulfamethoxazole (25 mL), providing a detection limit of 0.08 mu g and a quantification limit of 0.26 mu g. As a proof of concept, application to in-field analysis was successfully implemented.

2022

The CirCor DigiScope Dataset: From Murmur Detection to Murmur Classification

Autores
Oliveira, J; Renna, F; Costa, PD; Nogueira, M; Oliveira, C; Ferreira, C; Jorge, A; Mattos, S; Hatem, T; Tavares, T; Elola, A; Rad, AB; Sameni, R; Clifford, GD; Coimbra, MT;

Publicação
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS

Abstract
Cardiac auscultation is one of the most cost-effective techniques used to detect and identify many heart conditions. Computer-assisted decision systems based on auscultation can support physicians in their decisions. Unfortunately, the application of such systems in clinical trials is still minimal since most of them only aim to detect the presence of extra or abnormal waves in the phonocardiogram signal, i.e., only a binary ground truth variable (normal vs abnormal) is provided. This is mainly due to the lack of large publicly available datasets, where a more detailed description of such abnormal waves (e.g., cardiac murmurs) exists. To pave the way to more effective research on healthcare recommendation systems based on auscultation, our team has prepared the currently largest pediatric heart sound dataset. A total of 5282 recordings have been collected from the four main auscultation locations of 1568 patients, in the process, 215780 heart sounds have been manually annotated. Furthermore, and for the first time, each cardiac murmur has been manually annotated by an expert annotator according to its timing, shape, pitch, grading, and quality. In addition, the auscultation locations where the murmur is present were identified as well as the auscultation location where the murmur is detected more intensively. Such detailed description for a relatively large number of heart sounds may pave the way for new machine learning algorithms with a real-world application for the detection and analysis of murmur waves for diagnostic purposes.

2022

Quasi-Unimodal Distributions for Ordinal Classification

Autores
Albuquerque, T; Cruz, R; Cardoso, JS;

Publicação
MATHEMATICS

Abstract
Ordinal classification tasks are present in a large number of different domains. However, common losses for deep neural networks, such as cross-entropy, do not properly weight the relative ordering between classes. For that reason, many losses have been proposed in the literature, which model the output probabilities as following a unimodal distribution. This manuscript reviews many of these losses on three different datasets and suggests a potential improvement that focuses the unimodal constraint on the neighborhood around the true class, allowing for a more flexible distribution, aptly called quasi-unimodal loss. For this purpose, two constraints are proposed: A first constraint concerns the relative order of the top-three probabilities, and a second constraint ensures that the remaining output probabilities are not higher than the top three. Therefore, gradient descent focuses on improving the decision boundary around the true class in detriment to the more distant classes. The proposed loss is found to be competitive in several cases.

  • 8
  • 113