Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por BIO

2022

Learning Models for Traumatic Brain Injury Mortality Prediction on Pediatric Electronic Health Records

Autores
Fonseca, J; Liu, XY; Oliveira, HP; Pereira, T;

Publicação
FRONTIERS IN NEUROLOGY

Abstract
BackgroundTraumatic Brain Injury (TBI) is one of the leading causes of injury related mortality in the world, with severe cases reaching mortality rates of 30-40%. It is highly heterogeneous both in causes and consequences, complicating medical interpretation and prognosis. Gathering clinical, demographic, and laboratory data to perform a prognosis requires time and skill in several clinical specialties. Machine learning (ML) methods can take advantage of the data and guide physicians toward a better prognosis and, consequently, better healthcare. The objective of this study was to develop and test a wide range of machine learning models and evaluate their capability of predicting mortality of TBI, at hospital discharge, while assessing the similarity between the predictive value of the data and clinical significance. MethodsThe used dataset is the Hackathon Pediatric Traumatic Brain Injury (HPTBI) dataset, composed of electronic health records containing clinical annotations and demographic data of 300 patients. Four different classification models were tested, either with or without feature selection. For each combination of the classification model and feature selection method, the area under the receiver operator curve (ROC-AUC), balanced accuracy, precision, and recall were calculated. ResultsMethods based on decision trees perform better when using all features (Random Forest, AUC = 0.86 and XGBoost, AUC = 0.91) but other models require prior feature selection to obtain the best results (k-Nearest Neighbors, AUC = 0.90 and Artificial Neural Networks, AUC = 0.84). Additionally, Random Forest and XGBoost allow assessing the feature's importance, which could give insights for future strategies on the clinical routine. ConclusionPredictive capability depends greatly on the combination of model and feature selection methods used but, overall, ML models showed a very good performance in mortality prediction for TBI. The feature importance results indicate that predictive value is not directly related to clinical significance.

2022

A kinesthetic teaching approach for automating micropipetting repetitive tasks

Autores
Rocha, C; Dias, J; Moreira, AP; Veiga, G; Costa, P;

Publicação
INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY

Abstract
Nowadays, a laboratory operator in the areas of chemistry, biology or medicine spends considerable time performing micropipetting procedures, a common, monotonous and repetitive task which compromises the ergonomics of individuals, namely related to wrist musculoskeletal disorders. In this work, the design of a kinesthetic teaching approach for automating the micropipetting technique is presented, allowing to redirect the operator to other non-repetitive tasks, aiming to reduce the exposure to ergonomic risks. The proposed robotic solution has an innovative gripping system capable of supporting, actuating and regulating the volume of a manual micropipette. The system is able to configure the position of diverse laboratory materials, such as lab containers and plates, on the workbench through a collaborative robotic arm, providing flexibility to adapt to different procedures. A projected human-machine interface, which combines the display of information on the workbench with an infrared based interaction device was developed, providing a more intuitive interaction between the operator and the system during the configuration and operation phases. In contrast to the majority of the existing liquid handling systems, the proposed system allows the operator to place the materials freely on the workbench and the usage of different materials' variants, facilitating the implementation of the system in any laboratory. The attained performance and ease of use of the system were very encouraging since all the defined tasks in the conducted experiments were successfully performed by users with minimum training, highlighting its potential inclusion in the laboratory routine panorama.

2022

Beyond Masks: On the Generalization of Masked Face Recognition Models to Occluded Face Recognition

Autores
Neto, PCP; Pinto, JR; Boutros, F; Damer, N; Sequeira, AF; Cardoso, JS;

Publicação
IEEE ACCESS

Abstract
Over the years, the evolution of face recognition (FR) algorithms has been steep and accelerated by a myriad of factors. Motivated by the unexpected elements found in real-world scenarios, researchers have investigated and developed a number of methods for occluded face recognition (OFR). However, due to the SarS-Cov2 pandemic, masked face recognition (MFR) research branched from OFR and became a hot and urgent research challenge. Due to time and data constraints, these models followed different and novel approaches to handle lower face occlusions, i.e., face masks. Hence, this study aims to evaluate the different approaches followed for both MFR and OFR, find linked details about the two conceptually similar research directions and understand future directions for both topics. For this analysis, several occluded and face recognition algorithms from the literature are studied. First, they are evaluated in the task that they were trained on, but also on the other. These methods were picked accordingly to the novelty of their approach, proven state-of-the-art results, and publicly available source code. We present quantitative results on 4 occluded and 5 masked FR datasets, and a qualitative analysis of several MFR and OFR models on the Occ-LFW dataset. The analysis presented, sustain the interoperable deployability of MFR methods on OFR datasets, when the occlusions are of a reasonable size. Thus, solutions proposed for MFR can be effectively deployed for general OFR.

2022

Moodbuster (E-MODEL): The feasibility of digital cognitive behavioural therapy (CBT) for depressed older adults: Study protocol of two pilot feasibility studies (Preprint)

Autores
Amarti, K; Schulte, MHJ; Kleiboer, AM; van Genugten, CR; Oudega, M; Sonnenberg, C; Gonçalves, GC; Rocha, A; Riper, H;

Publicação

Abstract
BACKGROUND

Internet-based interventions can be effective in the treatment of depression. However, internet-based interventions for older adults with depression are scarce and little is known about their feasibility and effectiveness.

OBJECTIVE

To present the design of two studies aiming to assess the feasibility of internet-based cognitive behavioural treatment (CBT) for older adults with depression (E-MODEL). We will assess the feasibility of an online, guided version of E-MODEL among depressed older adults from the general population as well as the feasibility of a blended format (combining integrated face-to-face sessions and internet-based modules) in specialised mental health care outpatient clinic.

METHODS

A single-group pretest-posttest design will be applied for both settings. The primary outcome of the studies will be feasibility in terms of (a) acceptance and satisfaction (measured with the Client Satisfaction Questionnaire-8, (b) usability (measured with the System Usability Scale) and (c) engagement (measured with the Twente Engagement with Ehealth Technologies Scale). Secondary outcomes include: (a) severity of depressive symptoms (PHQ-8), (b) participant and therapist experience with the digital technology (with the use of qualitative interviews), (c) working alliance between patient and practitioner (from both perspectives; WAI-SF), (d) technical alliance between patient and the platform (WAI-TECH-SF) and (e) uptake in terms of attemped and completed modules. N=30 older adults with mild to moderate depressive symptoms (score between 5 and 11 as measured with the Geriatric Depression Scale 15) will be recruited from the general population. N=15 older adults with moderate to severe depressive symptoms (GDS-15 score between 8 and 15) will be recruited from a specialised mental health care outpatient clinic.

RESULTS

A mixed-method approach of quantitative and qualitative analyses will be adopted. Both the primary and secondary outcomes will be additionally explored with an individual semistructured interview and synthesized descriptively. Descriptive statistics (Mean and SDs) will be used to examine the primary and secondary outcome measures. Within-group depression severity will be analyzed using a two-tailed paired sample t-test to investigate differences between time points. The interviews will be recorded and analyzed using thematic analysis.

CONCLUSIONS

The results of this pilot study will show whether this platform is feasible among the older adult population in a blended and guided format in the two settings as well as a first exploration of the size of the effect of E-MODEL in terms of decrease of depressive symptoms.

2022

Invasive and minimally invasive optical detection of pigment accumulation in brain cortex

Autores
Oliveira, LR; Gonçalves, TM; Pinheiro, MR; Fernandes, LE; Martins, IS; Silva, HF; Oliveira, HP; Tuchin, VV;

Publicação
Journal of Biomedical Photonics and Engineering

Abstract
The estimation of the spectral absorption coefficient of biological tissues provides valuable information that can be used in diagnostic procedures. Such estimation can be made using direct calculations from invasive spectral measurements or though machine learning algorithms based on noninvasive or minimally invasive spectral measurements. Since in a noninvasive approach, the number of measurements is limited, an exploratory study to investigate the use of artificial generated data in machine learning techniques was performed to evaluate the spectral absorption coefficient of the brain cortex. Considering the spectral absorption coefficient that was calculated directly from invasive measurements as reference, the similar spectra that were estimated through different machine learning approaches were able to provide comparable information in terms of pigment, DNA and blood contents in the cortex. The best estimated results were obtained based only on the experimental measurements, but it was also observed that artificially generated spectra can be used in the estimations to increase accuracy, provided that a significant number of experimental spectra are available both to generate the complementary artificial spectra and to estimate the resulting absorption spectrum of the tissue. © 2022 Journal of Biomedical Photonics & Engineering. © J-BPE.

2022

Towards Machine Learning-Aided Lung Cancer Clinical Routines: Approaches and Open Challenges

Autores
Silva, F; Pereira, T; Neves, I; Morgado, J; Freitas, C; Malafaia, M; Sousa, J; Fonseca, J; Negrao, E; de Lima, BF; da Silva, MC; Madureira, AJ; Ramos, I; Costa, JL; Hespanhol, V; Cunha, A; Oliveira, HP;

Publicação
JOURNAL OF PERSONALIZED MEDICINE

Abstract
Advancements in the development of computer-aided decision (CAD) systems for clinical routines provide unquestionable benefits in connecting human medical expertise with machine intelligence, to achieve better quality healthcare. Considering the large number of incidences and mortality numbers associated with lung cancer, there is a need for the most accurate clinical procedures; thus, the possibility of using artificial intelligence (AI) tools for decision support is becoming a closer reality. At any stage of the lung cancer clinical pathway, specific obstacles are identified and motivate the application of innovative AI solutions. This work provides a comprehensive review of the most recent research dedicated toward the development of CAD tools using computed tomography images for lung cancer-related tasks. We discuss the major challenges and provide critical perspectives on future directions. Although we focus on lung cancer in this review, we also provide a more clear definition of the path used to integrate AI in healthcare, emphasizing fundamental research points that are crucial for overcoming current barriers.

  • 7
  • 113