Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por CPES

2024

Guidelines and Recommendations for Optimal Implementation of Integrated Local Energy Communities

Autores
Perez, ER; Fina, B; Iglár, B; Monsberger, C; Maggauer, K; Weber, AB; Yiasoumas, G; Georghiou, G; Villar, J; Mello, J; Stanev, R;

Publicação
Integrated Local Energy Communities: From Concepts and Enabling Conditions to Optimal Planning and Operation

Abstract
Integrated local energy communities (ILECs) introduction involves a set of challenges for the existing energy infrastructure. As a result of the development and research performed in projects on this topic, several guidelines and recommendations are formulated. This chapter recaps major problems of the implementation of ILECs identified in the reviewed literature and provides recommendations to overcome them by covering five dimensions. In the technical dimension, the implementation of strategies to avoid the grid reinforcement as well as coordination between system operators become crucial for the development of ILEC-related technologies. In terms of regulations, tax exemptions, additional financial funding, and simplification of paperwork for projects should be introduced backed by a clear EU strategy. In the environmental dimension, ILECs boost the transition toward decentralized renewable generation contributing to the gradual replacement of fossil-fuel generation plants and this benefit can be maximized by performing deeper environmental assessments. Additionally, there is a need of cost-effective financial tools for planning and management as well as the development of suitable economic incentives. Lastly, the implementation of strategies to increase the social acceptance of the ILEC paradigm through the organization of engagement activities between citizens, stakeholders, and other actors arises as the key action. © 2025 WILEY-VCH GmbH. Published 2025 by WILEY-VCH GmbH. All rights reserved.

2024

Hybrid Energy Storage System sizing model based on load recurring pattern identification

Autores
Lucas, A; Golmaryami, S; Carvalhosa, S;

Publicação
JOURNAL OF ENERGY STORAGE

Abstract
Hybrid Energy Storage Systems (HESS) have attracted attention in recent years, promising to outperform single batteries in some applications. This can be in decreasing the total cost of ownership, extending the combined lifetime, having higher versatility in providing multiple services, and reducing the physical hosting location. The sizing of hybrid systems in such a way that proves to optimally replace a single battery is a challenging task. This is particularly true if such a tool is expected to be a practical one, applicable to different inputs and which can provide a range of optimal solutions for decision makers as a support. This article provides exactly that, presenting a technology -independent sizing model for Hybrid Energy Storage Systems. The model introduces a three-step algorithm: the first block employs a clustering of time series using Dynamic Time Warping (DTW), to analyze the most recurring pattern. The second block optimizes the battery dispatch using Linear Programming (LP). Lastly, the third block identifies an optimal hybridization area for battery size configuration (H indicator), and offers practical insights for commercial technology selection. The model is applied to a real dataset from an office building to verify the tool and provides viable and non-viable hybridization sizing examples. For validation, the tool was compared to a full optimization approach and results are consistent both for the single battery sizing, as well as for confirming the hybrid combination dimensioning. The optimal solution potential (H) in the example provided is 0.13 and the algorithm takes a total of 30s to run a full year of data. The model is a Pythonbased tool, which is openly accessible on GitHub, to support and encourage further developments and use.

2024

Review of Digital Transformation in the Energy Sector: Assessing Maturity and Adoption Levels of Digital Services and Products via Fuzzy Logic

Autores
Carvalhosa, S; Lucas, A; Neumann, C; Türk, A;

Publicação
IEEE ACCESS

Abstract
Digitalization has begun as a transformative force within the energy sector, reforming traditional practices and paving the way for enhanced operational efficiency and sustainability. Enabled by key technologies such as smart meters, digitalization embodies a paradigm shift in energy management. Nonetheless, it is crucial to recognize that these enabling technologies are only the catalysts and not the end goal. This paper presents a comprehensive overview of digital services and products in the energy sector, with a specific focus on emerging technologies like AI and Connected Data Spaces. The objective of this review paper is to assess the maturity and adoption levels of these digital solutions, seeking to draw insights into the factors influencing their varying levels of success. This maturity and adoption assessment was carried out by applying a Fuzzy logic approach which allowed us to compensate for the lack of detailed information in current literature. By analyzing the reasons behind high maturity-low adoption and vice-versa, this study seeks to cast light on the dynamics shaping the digital transformation of the energy sector.

2024

Hybrid Energy Storage System Dispatch Optimization for Cost and Environmental Impact Analysis

Autores
Preto, M; Lucas, A; Benedicto, P;

Publicação
ENERGIES

Abstract
Incorporating renewables in the power grid presents challenges for stability, reliability, and operational efficiency. Integrating energy storage systems (ESSs) offers a solution by managing unpredictable loads, enhancing reliability, and serving the grid. Hybrid storage solutions have gained attention for specific applications, suggesting higher performance in some respects. This article compares the performance of hybrid energy storage systems (HESSs) to a single battery, evaluating their energy supply cost and environmental impact through optimization problems. The optimization model is based on a MILP incorporating the energy and degradation terms. It generates an optimized dispatch, minimizing cost or environmental impact of supplying energy to a generic load. Seven technologies are assessed, with an example applied to an industrial site combining a vanadium redox flow battery (VRFB) and lithium battery considering the demand of a local load (building). The results indicate that efficiency and degradation curves have the highest impact in the final costs and environmental functions on the various storage technologies assessed. For the simulations of the example case, a single system only outperforms the hybrid system in cases where lithium efficiency is higher than approximately 87% and vanadium is lower approximately 82%.

2024

Battery Control for Node Capacity Increase for Electric Vehicle Charging Support

Autores
Ahmad, MW; Lucas, A; Carvalhosa, SMP;

Publicação
ENERGIES

Abstract
The integration of electric vehicles (EVs) into the power grid poses significant challenges and opportunities for energy management systems. This is especially concerning for parking lots or private building condominiums in which refurbishing is not possible or is costly. This paper presents a real-time monitoring approach to EV charging dynamics with battery storage support over a 24 h period. By simulating EV demand, state of charge (SOC), and charging and discharging events, we provide insights into the operational strategies for energy storage systems to ensure maximum charging simultaneity factor through internal power enhancement. The study uses a time-series analysis of EV demand, contrasting it with the battery's SOC, to dynamically adjust charging and discharging actions within the constraints of the upstream infrastructure capacity. The model incorporates parameters such as maximum power capacity, energy storage capacity, and charging efficiencies, to reflect realistic conditions. Results indicate that real-time SOC monitoring, coupled with adaptive charging strategies, can mitigate peak demands and enhance the system's responsiveness to fluctuating loads. This paper emphasizes the critical role of real-time data analysis in the effective management of energy resources in existing parking lots and lays the groundwork for developing intelligent grid-supportive frameworks in the context of growing EV adoption.

2024

Gaussian Mixture Model for Battery Operation Anomaly Detection.

Autores
Lucas, A; Carvalhosa, S; Golmaryami, S;

Publicação
2024 INTERNATIONAL CONFERENCE ON SMART ENERGY SYSTEMS AND TECHNOLOGIES, SEST 2024

Abstract
This research presents an anomaly detection algorithm for a Vanadium Redox Flow Battery (VRFB) using battery dataset as an example. The algorithm determines the anomaly detection threshold by fitting a Gaussian mixed model (GMM) to an anomaly-free dataset and testing it against a dataset containing only anomalies. By forcing the test dataset to classify all observations as anomalies, the threshold can be found. Applying again the model to the training dataset, classifies 11% of normal observations as failures, indicating that, not all observations were captured by the GMM, resulting in false positives. A percentage based on the likelihood values is suggested for replication to other systems, and a ratio of anomaly detection over time is proposed for preventive maintenance alerts.

  • 36
  • 359