2018
Autores
Oliveira, FT; Bernardo, H;
Publicação
Encyclopedia of Sustainability in Higher Education
Abstract
2018
Autores
Bernardo, H; Oliveira, F;
Publicação
ENVIRONMENTS
Abstract
This paper presents results of work developed in the field of building energy benchmarking applied to the building stock of the Polytechnic Institute of Leiria, Portugal, based on a thorough energy performance characterisation of each of its buildings. To address the benchmarking of the case study buildings, an energy efficiency ranking system was applied. Following an energy audit of each building, they were grouped in different typologies according to the main end-use activities developed: Pedagogic buildings, canteens, residential buildings and office buildings. Then, an energy usage indicator was used to establish a metric to rank the buildings of each typology according to their energy efficiency. The energy savings potential was also estimated, based on the reference building energy usage indicator for each typology, and considering two different scenarios, yielding potential savings between 10% and 34% in final energy consumption.
2018
Autores
Bernardo, H; Gaspar, A; Antunes, CH;
Publicação
SUSTAINABILITY
Abstract
Several technological, social and organizational factors influence energy management in school buildings, resulting in a complex situation away from the usual engineering approach. The selection of evaluation criteria to assess the energy performance of school buildings remains one of the most challenging aspects since these should accommodate the perspectives of the potential key stakeholders. This paper presents a comprehensive problem structuring approach combining Soft Systems Methodology and Value Focused Thinking to elicit and organize the multiple aspects that influence energy efficiency of school buildings. The main aim of this work is structuring the fundamental objectives to develop a criteria tree to be considered in a multi-criteria classification model to be used by management entities for rating overall energy performance of school buildings. This methodological framework helped grasping the main issues at stake for a thorough energy performance assessment of school buildings and the need to define adequate policies for improvement.
2018
Autores
Ndawula M.B.; Zhao P.; Hernando-Gil I.;
Publicação
Proceedings - 2018 IEEE International Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe, EEEIC/I and CPS Europe 2018
Abstract
This paper presents a reliability-based approach for the design and deployment of an energy management system (EMS) by using 'smart' applications, such as energy storage (ES), to control battery power output in residential dwellings, and thus improve distribution-network reliability performance. The state of charge (SOC) of the battery system is designed based on time-varying electricity tariff, load demand and solar photovoltaic (PV) generation data to investigate a realistic test-case scenario. Additionally, a typical MV/LV urban distribution system is fully modelled and scripted to investigate the potential benefits that 'smart' interventions can offer to customers' quality of power supply. In this research, Monte-Carlo simulation method is further developed to include the time-variation of electricity demand profiles and failure rates of network components. Accordingly, the reliability-based effects from SOC variation in batteries are compared with an uncontrolled microgeneration (MG) scenario, by using different PV penetration levels to justify the value of control. The benefits are assessed through standard reliability indices measuring frequency and duration of power interruptions and most importantly, the energy not supplied to customers during sustained interruptions.
2018
Autores
Zhao P.; Hernando-Gil I.; Wu H.;
Publicação
Proceedings - 2018 IEEE International Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe, EEEIC/I and CPS Europe 2018
Abstract
Microgrid, as an emerging small-scale power system comprising a range of power sources, power electronic interfaces, loads, storage units, and being able to supply remote areas or local communities, either can be operated in islanded or grid-connected mode. Based on this concept, this paper proposes the scalability assessment and day-ahead optimization, with time-varying load and time-of-use tariff data in 48 time-periods, for multiple microgrids applied in the accommodation area in a UK university, based on an existing microgrid test system currently under investigation in its Smart Grid Laboratory. Four different scenarios, including weekdays and weekends over two seasons (summer and winter), are analyzed to achieve the optimal scheduling of the microgrid technologies. In addition, a long-term planning assessment, on optimization over 20 years, is presented to discuss the influence of microgrids' power component depreciation and life span on total energy costs and savings.
2018
Autores
Ndawula M.B.; Hernando-Gil I.; Djokic S.;
Publicação
Proceedings - 2018 IEEE International Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe, EEEIC/I and CPS Europe 2018
Abstract
This paper presents an integrated approach for assessing the impact that distributed energy resources (DERs), mostly intermittent in nature, might have on the reliability performance of distribution networks. A test distribution system based on a typical MV/LV urban distribution network in the UK is fully modelled and controlled to investigate the potential benefits that local renewables and energy storage can offer to the quality of power supply to customers. In this analysis, the conventional Monte Carlo method is further developed to include the time-variation of electricity demand profiles and failure rates of network components. Additionally, a theoretical interruption model is employed to assess more accurately the moment in time when interruptions to electricity customers are likely to occur. Accordingly, the impact of the spatio-temporal variation of DERs, with photovoltaic (PV) systems as key enablers, is quantified in terms of the effect of network outages. A range of smart grid functionalities is analysed and their benefits are assessed through standard reliability indices, with special attention to energy not supplied to customers, as well as frequency and duration of supply interruptions.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.