2025
Autores
Santos, JC; Tomás Pereira Alexandre, H; Seoane Santos, M; Henriques Abreu, P;
Publicação
ACM Transactions on Computing for Healthcare
Abstract
2024
Autores
Cabrera-Sánchez, JF; Pereira, RC; Abreu, PH; Silva-Ramírez, EL;
Publicação
IEEE ACCESS
Abstract
Progressively more advanced and complex models are proposed to address problems related to computer vision, forecasting, Internet of Things, Big Data and so on. However, these disciplines require preprocessing steps to obtain meaningful results. One of the most common problems addressed in this stage is the presence of missing values. Understanding the reason why missingness occurs helps to select data imputation methods that are more adequate to complete these missing values. Missing at Random synthetic generation presents challenges such as achieving extreme missingness rates and preserving the consistency of the mechanism. To address these shortcomings, three new methods that generate synthetic missingness under the Missing at Random mechanism are proposed in this work and compared to a baseline model. This comparison considers a benchmark covering 33 data sets and five missingness rates $(10\%, 20\%, 40\%, 60\%, 80\%)$ . Seven data imputation methods are compared to evaluate the proposals, ranging from traditional methods to deep learning methods. The results demonstrate that the proposals are aligned with the baseline method in terms of the performance and ranking of data imputation methods. Thus, three new feasible and consistent alternatives for synthetic missingness generation under Missing at Random are presented.
2024
Autores
Santos, JC; Santos, MS; Abreu, PH;
Publicação
PROGRESS IN BIOMEDICAL ENGINEERING
Abstract
Mammography imaging remains the gold standard for breast cancer detection and diagnosis, but challenges in image quality can lead to misdiagnosis, increased radiation exposure, and higher healthcare costs. This comprehensive review evaluates traditional and machine learning-based techniques for improving mammography image quality, aiming to benefit clinicians and enhance diagnostic accuracy. Our literature search, spanning 2015 - 2024, identified 115 articles focusing on contrast enhancement and noise reduction methods, including histogram equalization, filtering, unsharp masking, fuzzy logic, transform-based techniques, and advanced machine learning approaches. Machine learning, particularly architectures integrating denoising autoencoders with convolutional neural networks, emerged as highly effective in enhancing image quality without compromising detail. The discussion highlights the success of these techniques in improving mammography images' visual quality. However, challenges such as high noise ratios, inconsistent evaluation metrics, and limited open-source datasets persist. Addressing these issues offers opportunities for future research to further advance mammography image enhancement methodologies.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.