2020
Autores
Correia, CM; Fauvarque, O; Bond, CZ; Chambouleyron, V; Sauvage, JF; Fusco, T;
Publicação
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
Abstract
Advanced adaptive-optics (AO) systems will likely utilize pyramid wavefront sensors (PWFSs) over the traditional Shack-Hartmann sensor in the quest for increased sensitivity, peak performance and ultimate contrast. Here, we explain and quantify the PWFS theoretical limits as a means to highlight its properties and applications. We explore forward models for the PWFS in the spatial-frequency domain: these prove useful because (i) they emanate directly from physical-optics (Fourier) diffraction theory; (ii) they provide a straightforward path to meaningful error breakdowns; (iii) they allow for reconstruction algorithms with O(n log(n)) complexity for large-scale systems; and (iv) they tie in seamlessly with decoupled (distributed) optimal predictive dynamic control for performance and contrast optimization. All these aspects are dealt with here. We focus on recent analytical PWFS developments and demonstrate the performance using both analytic and end-to-end simulations. We anchor our estimates on observed on-sky contrast on existing systems, and then show very good agreement between analytical and Monte Carlo performance estimates on AO systems featuring the PWFS. For a potential upgrade of existing high-contrast imagers on 10-m-class telescopes with visible or near-infrared PWFSs, we show, under median conditions at Paranal, a contrast improvement (limited by chromatic and scintillation effects) of 2×-5× when just replacing the wavefront sensor at large separations close to the AO control radius where aliasing dominates, and of factors in excess of 10× by coupling distributed control with the PWFS over most of the AO control region, from small separations starting with an inner working angle of typically 1-2 ?/D to the AO correction edge (here 20 ?/D).
2020
Autores
Cantalloube, F; Farley, OJD; Milli, J; Bharmal, N; Brandner, W; Correia, C; Dohlen, K; Henning, T; Osborn, J; Por, E; Suárez Valles, M; Vigan, A;
Publicação
Astronomy & Astrophysics
Abstract
2020
Autores
Chambouleyron, V; Fauvarque, O; Janin Potiron, P; Correia, C; Sauvage, JF; Schwartz, N; Neichel, B; Fusco, T;
Publicação
ASTRONOMY & ASTROPHYSICS
Abstract
Context. Extremely large telescopes are overwhelmingly equipped with pyramid wavefront sensors (PyWFS) over the more widely used Shack-Hartmann wavefront sensor to perform their single-conjugate adaptive optics (SCAO) mode. The PyWFS, a sensor based on Fourier filtering, has proven to be highly successful in many astronomy applications. However, this sensor exhibits non-linear behaviours that lead to a reduction of the sensitivity of the instrument when working with non-zero residual wavefronts. This so-called optical gains (OG) effect, degrades the closed-loop performance of SCAO systems and prevents accurate correction of non-common path aberrations (NCPA). Aims. In this paper, we aim to compute the OG using a fast and agile strategy to control PyWFS measurements in adaptive optics closed-loop systems. Methods. Using a novel theoretical description of PyWFS, which is based on a convolutional model, we are able to analytically predict the behaviour of the PyWFS in closed-loop operation. This model enables us to explore the impact of residual wavefront errors on particular aspects such as sensitivity and associated OG. The proposed method relies on the knowledge of the residual wavefront statistics and enables automatic estimation of the current OG. End-to-end numerical simulations are used to validate our predictions and test the relevance of our approach. Results. We demonstrate, using on non-invasive strategy, that our method provides an accurate estimation of the OG. The model itself only requires adaptive optics telemetry data to derive statistical information on atmospheric turbulence. Furthermore, we show that by only using an estimation of the current Fried parameter r0 and the basic system-level characteristics, OGs can be estimated with an accuracy of less than 10%. Finally, we highlight the importance of OG estimation in the case of NCPA compensation. The proposed method is applied to the PyWFS. However, it remains valid for any wavefront sensor based on Fourier filtering subject from OG variations.
2020
Autores
Beltramo Martin, O; Ragland, S; Fétick, R; Correia, C; Dupuy, T; Fiorentino, G; Fusco, T; Jolissaint, L; Kamann, S; Marasco, A; Massari, D; Neichel, B; Schreiber, L; Wizinowich, P;
Publicação
Proceedings of SPIE - The International Society for Optical Engineering
Abstract
Determining the PSF remains a key challenge for post adaptive-optics (AO) observations regarding the spatial, temporal and spectral variabilities of the AO PSF, as well as itx complex structure. This paper aims to provide a non-exhaustive but classified list of techniques and references that address this issue of PSF determination, with a particular scope on PSF reconstruction, or more generally pupil-plane-based approaches. We have compiled a large amount of references to synthesize the main messages and kept them at a top level. We also present applications of PSF reconstruction/models to post-processing, more especially PSF-fitting and deconvolution for which there is a fast progress in the community. © 2020 SPIE.
2020
Autores
Morris, T; Osborn, J; Reyes, M; Montilla, I; Rousset, G; Gendron, E; Fusco, T; Neichel, B; Esposito, S; Garcia, PJV; Kulcsar, C; Correia, C; Beuzit, JL; Bharmal, NA; Bardou, L; Staykov, L; Bonaccini Calia, D;
Publicação
Proceedings of SPIE - The International Society for Optical Engineering
Abstract
On-sky testing of new instrumentation concepts is required before they can be incorporated within facility-class instrumentation with certainty that they will work as expected within a real telescope environment. Increasingly, many of these concepts are not designed to work in seeing-limited conditions and require an upstream adaptive optics system for testing. Access to on-sky AO systems to test such systems is currently limited to a few research groups and observatories worldwide, leaving many concepts unable to be tested. A pilot program funded through the H2020 OPTICON program offering up to 15 nights of on-sky time at the CANARY Adaptive Optics demonstrator is currently running but this ends in 2021. Pre-run and on-sky support is provided to visitor experiments by the CANARY team. We have supported 6 experiments over this period, and plan one more run in early 2021. We have recently been awarded for funding through the H2020 OPTICON-RADIO PILOT call to continue and extend this program up until 2024, offering access to CANARY at the 4.2m William Herschel Telescope and 3 additional instruments and telescopes suitable for instrumentation development. Time on these facilities will be open to researchers from across the European research community and time will be awarded by answering a call for proposals that will be assessed by an independent panel of instrumentation experts. Unlike standard observing proposals we plan to award time up to 2 years in advance to allow time for the visitor instrument to be delivered. We hope to announce the first call in mid-2021. Here we describe the facilities offered, the support available for on-sky testing and detail the eligibility and application process. © 2020 SPIE.
2021
Autores
Schatz, L; Males, JR; Correia, C; Neichel, B; Chambouleyron, V; Codona, J; Fauvarque, O; Sauvage, JF; Fusco, T; Hart, M; Janin Potiron, P; Johnson, R; Long, JD; Mateen, M;
Publicação
JOURNAL OF ASTRONOMICAL TELESCOPES INSTRUMENTS AND SYSTEMS
Abstract
The Giant Segmented Mirror Telescopes (GSMTs) including the Giant Magellan Telescope (GMT), the Thirty Meter Telescope (TMT), and the European Extremely Large Telescope (E-ELT), all have extreme adaptive optics (ExAO) instruments planned that will use pyramid wavefront sensors (PWFS). The ExAO instruments all have common features: a high-actuator-count deformable mirror running at extreme speeds (>1 kHz); a high-performance wavefront sensor (WFS); and a high-contrast coronagraph. ExAO WFS performance is currently limited by the need for high spatial sampling of the wavefront which requires large detectors. For ExAO instruments for the next generation of telescopes, alternative architectures of WFS are under consideration because there is a trade-off between detector size, speed, and noise that reduces the performance of GSMT-ExAO wavefront control. One option under consideration for a GSMT-ExAO wavefront sensor is a three-sided PWFS (3PWFS). The 3PWFS creates three copies of the telescope pupil for wavefront sensing, compared to the conventional four-sided PWFS (4PWFS), which uses four pupils. The 3PWFS uses fewer detector pixels than the 4PWFS and should therefore be less sensitive to read noise. Here we develop a mathematical formalism based on the diffraction theory description of the Foucault knife-edge test that predicts the intensity pattern after the PWFS. Our formalism allows us to calculate the intensity in the pupil images formed by the PWFS in the presence of phase errors corresponding to arbitrary Fourier modes. We use these results to motivate how we process signals from a 3PWFS. We compare the raw intensity (RI) method, and derive the Slopes Maps (SM) calculation for the 3PWFS, which combines the three pupil images of the 3PWFS to obtain the X and Y slopes of the wavefront. We then use the Object Oriented MATLAB Adaptive Optics toolbox (OOMAO) to simulate an end-to-end model of an AO system using a PWFS with modulation and compare the performance of the 3PWFS to the 4PWFS. In the case of a low read noise detector, the Strehl ratios of the 3PWFS and 4PWFS are within 0.01. When we included higher read noise in the simulation, we found a Strehl ratio gain of 0.036 for the 3PWFS using RI over the 4PWFS using SM at a stellar magnitude of 10. At the same magnitude, the 4PWFS RI also outperformed the 4PWFS SM, but the gain was only 0.012 Strehl. This is significant because 4PWFS using SM is how the PWFS is conventionally used for AO wavefront sensing. We have found that the 3PWFS is a viable WFS that can fully reconstruct a wavefront and produce a stable closed-loop with correction comparable to that of a 4PWFS, with modestly better performance for high read-noise detectors.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.