Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por Carlos Manuel Correia

2020

Performance limits of adaptive-optics/high-contrast imagers with pyramid wavefront sensors

Autores
Correia, CM; Fauvarque, O; Bond, CZ; Chambouleyron, V; Sauvage, JF; Fusco, T;

Publicação
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY

Abstract
Advanced adaptive-optics (AO) systems will likely utilize pyramid wavefront sensors (PWFSs) over the traditional Shack-Hartmann sensor in the quest for increased sensitivity, peak performance and ultimate contrast. Here, we explain and quantify the PWFS theoretical limits as a means to highlight its properties and applications. We explore forward models for the PWFS in the spatial-frequency domain: these prove useful because (i) they emanate directly from physical-optics (Fourier) diffraction theory; (ii) they provide a straightforward path to meaningful error breakdowns; (iii) they allow for reconstruction algorithms with O(n log(n)) complexity for large-scale systems; and (iv) they tie in seamlessly with decoupled (distributed) optimal predictive dynamic control for performance and contrast optimization. All these aspects are dealt with here. We focus on recent analytical PWFS developments and demonstrate the performance using both analytic and end-to-end simulations. We anchor our estimates on observed on-sky contrast on existing systems, and then show very good agreement between analytical and Monte Carlo performance estimates on AO systems featuring the PWFS. For a potential upgrade of existing high-contrast imagers on 10-m-class telescopes with visible or near-infrared PWFSs, we show, under median conditions at Paranal, a contrast improvement (limited by chromatic and scintillation effects) of 2×-5× when just replacing the wavefront sensor at large separations close to the AO control radius where aliasing dominates, and of factors in excess of 10× by coupling distributed control with the PWFS over most of the AO control region, from small separations starting with an inner working angle of typically 1-2 ?/D to the AO correction edge (here 20 ?/D).

2020

Wind-driven halo in high-contrast images

Autores
Cantalloube, F; Farley, OJD; Milli, J; Bharmal, N; Brandner, W; Correia, C; Dohlen, K; Henning, T; Osborn, J; Por, E; Suárez Valles, M; Vigan, A;

Publicação
Astronomy & Astrophysics

Abstract
Context.The wind-driven halo is a feature that is observed in images that were delivered by the latest generation of ground-based instruments that are equipped with an extreme adaptive optics system and a coronagraphic device, such as SPHERE at the Very Large Telescope (VLT). This signature appears when the atmospheric turbulence conditions vary faster than the adaptive optics loop can correct for. The wind-driven halo is observed as a radial extension of the point spread function along a distinct direction (this is sometimes referred to as the butterfly pattern). When this is present, it significantly limits the contrast capabilities of the instrument and prevents the extraction of signals at close separation or extended signals such as circumstellar disks. This limitation is consequential because it contaminates the data for a substantial fraction of the time: about 30% of the data produced by the VLT/SPHERE instrument are affected by the wind-driven halo.Aims.This paper reviews the causes of the wind-driven halo and presents a method for analyzing its contribution directly from the scientific images. Its effect on the raw contrast and on the final contrast after post-processing is demonstrated.Methods.We used simulations and on-sky SPHERE data to verify that the parameters extracted with our method can describe the wind-driven halo in the images. We studied the temporal, spatial, and spectral variation of these parameters to point out its deleterious effect on the final contrast.Results.The data-driven analysis we propose provides information to accurately describe the wind-driven halo contribution in the images. This analysis confirms that this is a fundamental limitation of the finally reached contrast performance.Conclusions.With the established procedure, we will analyze a large sample of data delivered by SPHERE in order to propose post-processing techniques that are tailored to removing the wind-driven halo.

2020

Pyramid wavefront sensor optical gains compensation using a convolutional model

Autores
Chambouleyron, V; Fauvarque, O; Janin Potiron, P; Correia, C; Sauvage, JF; Schwartz, N; Neichel, B; Fusco, T;

Publicação
ASTRONOMY & ASTROPHYSICS

Abstract
Context. Extremely large telescopes are overwhelmingly equipped with pyramid wavefront sensors (PyWFS) over the more widely used Shack-Hartmann wavefront sensor to perform their single-conjugate adaptive optics (SCAO) mode. The PyWFS, a sensor based on Fourier filtering, has proven to be highly successful in many astronomy applications. However, this sensor exhibits non-linear behaviours that lead to a reduction of the sensitivity of the instrument when working with non-zero residual wavefronts. This so-called optical gains (OG) effect, degrades the closed-loop performance of SCAO systems and prevents accurate correction of non-common path aberrations (NCPA). Aims. In this paper, we aim to compute the OG using a fast and agile strategy to control PyWFS measurements in adaptive optics closed-loop systems. Methods. Using a novel theoretical description of PyWFS, which is based on a convolutional model, we are able to analytically predict the behaviour of the PyWFS in closed-loop operation. This model enables us to explore the impact of residual wavefront errors on particular aspects such as sensitivity and associated OG. The proposed method relies on the knowledge of the residual wavefront statistics and enables automatic estimation of the current OG. End-to-end numerical simulations are used to validate our predictions and test the relevance of our approach. Results. We demonstrate, using on non-invasive strategy, that our method provides an accurate estimation of the OG. The model itself only requires adaptive optics telemetry data to derive statistical information on atmospheric turbulence. Furthermore, we show that by only using an estimation of the current Fried parameter r0 and the basic system-level characteristics, OGs can be estimated with an accuracy of less than 10%. Finally, we highlight the importance of OG estimation in the case of NCPA compensation. The proposed method is applied to the PyWFS. However, it remains valid for any wavefront sensor based on Fourier filtering subject from OG variations.

2020

Review of PSF reconstruction methods and application to post-processing

Autores
Beltramo Martin, O; Ragland, S; Fétick, R; Correia, C; Dupuy, T; Fiorentino, G; Fusco, T; Jolissaint, L; Kamann, S; Marasco, A; Massari, D; Neichel, B; Schreiber, L; Wizinowich, P;

Publicação
Proceedings of SPIE - The International Society for Optical Engineering

Abstract
Determining the PSF remains a key challenge for post adaptive-optics (AO) observations regarding the spatial, temporal and spectral variabilities of the AO PSF, as well as itx complex structure. This paper aims to provide a non-exhaustive but classified list of techniques and references that address this issue of PSF determination, with a particular scope on PSF reconstruction, or more generally pupil-plane-based approaches. We have compiled a large amount of references to synthesize the main messages and kept them at a top level. We also present applications of PSF reconstruction/models to post-processing, more especially PSF-fitting and deconvolution for which there is a fast progress in the community. © 2020 SPIE.

2020

The ORP on-sky community access program for adaptive optics instrumentation development

Autores
Morris, T; Osborn, J; Reyes, M; Montilla, I; Rousset, G; Gendron, E; Fusco, T; Neichel, B; Esposito, S; Garcia, PJV; Kulcsar, C; Correia, C; Beuzit, JL; Bharmal, NA; Bardou, L; Staykov, L; Bonaccini Calia, D;

Publicação
Proceedings of SPIE - The International Society for Optical Engineering

Abstract
On-sky testing of new instrumentation concepts is required before they can be incorporated within facility-class instrumentation with certainty that they will work as expected within a real telescope environment. Increasingly, many of these concepts are not designed to work in seeing-limited conditions and require an upstream adaptive optics system for testing. Access to on-sky AO systems to test such systems is currently limited to a few research groups and observatories worldwide, leaving many concepts unable to be tested. A pilot program funded through the H2020 OPTICON program offering up to 15 nights of on-sky time at the CANARY Adaptive Optics demonstrator is currently running but this ends in 2021. Pre-run and on-sky support is provided to visitor experiments by the CANARY team. We have supported 6 experiments over this period, and plan one more run in early 2021. We have recently been awarded for funding through the H2020 OPTICON-RADIO PILOT call to continue and extend this program up until 2024, offering access to CANARY at the 4.2m William Herschel Telescope and 3 additional instruments and telescopes suitable for instrumentation development. Time on these facilities will be open to researchers from across the European research community and time will be awarded by answering a call for proposals that will be assessed by an independent panel of instrumentation experts. Unlike standard observing proposals we plan to award time up to 2 years in advance to allow time for the visitor instrument to be delivered. We hope to announce the first call in mid-2021. Here we describe the facilities offered, the support available for on-sky testing and detail the eligibility and application process. © 2020 SPIE.

2021

Three-sided pyramid wavefront sensor, part 1: simulations and analysis for astronomical adaptive optics

Autores
Schatz, L; Males, JR; Correia, C; Neichel, B; Chambouleyron, V; Codona, J; Fauvarque, O; Sauvage, JF; Fusco, T; Hart, M; Janin Potiron, P; Johnson, R; Long, JD; Mateen, M;

Publicação
JOURNAL OF ASTRONOMICAL TELESCOPES INSTRUMENTS AND SYSTEMS

Abstract
The Giant Segmented Mirror Telescopes (GSMTs) including the Giant Magellan Telescope (GMT), the Thirty Meter Telescope (TMT), and the European Extremely Large Telescope (E-ELT), all have extreme adaptive optics (ExAO) instruments planned that will use pyramid wavefront sensors (PWFS). The ExAO instruments all have common features: a high-actuator-count deformable mirror running at extreme speeds (>1 kHz); a high-performance wavefront sensor (WFS); and a high-contrast coronagraph. ExAO WFS performance is currently limited by the need for high spatial sampling of the wavefront which requires large detectors. For ExAO instruments for the next generation of telescopes, alternative architectures of WFS are under consideration because there is a trade-off between detector size, speed, and noise that reduces the performance of GSMT-ExAO wavefront control. One option under consideration for a GSMT-ExAO wavefront sensor is a three-sided PWFS (3PWFS). The 3PWFS creates three copies of the telescope pupil for wavefront sensing, compared to the conventional four-sided PWFS (4PWFS), which uses four pupils. The 3PWFS uses fewer detector pixels than the 4PWFS and should therefore be less sensitive to read noise. Here we develop a mathematical formalism based on the diffraction theory description of the Foucault knife-edge test that predicts the intensity pattern after the PWFS. Our formalism allows us to calculate the intensity in the pupil images formed by the PWFS in the presence of phase errors corresponding to arbitrary Fourier modes. We use these results to motivate how we process signals from a 3PWFS. We compare the raw intensity (RI) method, and derive the Slopes Maps (SM) calculation for the 3PWFS, which combines the three pupil images of the 3PWFS to obtain the X and Y slopes of the wavefront. We then use the Object Oriented MATLAB Adaptive Optics toolbox (OOMAO) to simulate an end-to-end model of an AO system using a PWFS with modulation and compare the performance of the 3PWFS to the 4PWFS. In the case of a low read noise detector, the Strehl ratios of the 3PWFS and 4PWFS are within 0.01. When we included higher read noise in the simulation, we found a Strehl ratio gain of 0.036 for the 3PWFS using RI over the 4PWFS using SM at a stellar magnitude of 10. At the same magnitude, the 4PWFS RI also outperformed the 4PWFS SM, but the gain was only 0.012 Strehl. This is significant because 4PWFS using SM is how the PWFS is conventionally used for AO wavefront sensing. We have found that the 3PWFS is a viable WFS that can fully reconstruct a wavefront and produce a stable closed-loop with correction comparable to that of a 4PWFS, with modestly better performance for high read-noise detectors.

  • 17
  • 23