Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por Rúben Miguel Queirós

2024

Joint Channel Bandwidth Assignment and Relay Positioning for Predictive Flying Networks

Autores
Queirós, R; Kaneko, M; Fontes, H; Campos, R;

Publicação
IEEE Globecom Workshops 2024, Cape Town, South Africa, December 8-12, 2024

Abstract

2025

Context-aware Rate Adaptation for Predictive Flying Networks using Contextual Bandits

Autores
Queirós, R; Kaneko, M; Fontes, H; Campos, R;

Publicação
CoRR

Abstract

2025

Context-Aware Rate Adaptation for Predictable Flying Networks using Contextual Bandits

Autores
Queiros, R; Kaneko, M; Fontes, H; Campos, R;

Publicação
IEEE Networking Letters

Abstract
The increasing complexity of wireless technologies, such as Wi-Fi, presents significant challenges for Rate Adaptation (RA) due to the large configuration space of transmission parameters. While extensive research has been conducted on RA for low-mobility networks, existing solutions fail to adapt in Flying Networks (FNs), where high mobility and dynamic wireless conditions introduce additional uncertainty. We propose Linear Upper Confidence Bound for RA (LinRA), a novel Contextual Bandit-based approach that leverages real-Time link context to optimize transmission rates in predictable FNs, where future trajectories are known. Simulation results demonstrate that LinRA converges 5.2× faster than benchmarks and improves throughput by 80% in Non Line-of-Sight conditions, matching the performance of ideal algorithms. © 2025 Elsevier B.V., All rights reserved.

  • 2
  • 2