Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por CESE

2020

Explainable Intelligent Environments

Autores
Carneiro, D; Silva, F; Guimarães, M; Sousa, D; Novais, P;

Publicação
Ambient Intelligence - Software and Applications - 11th International Symposium on Ambient Intelligence, ISAmI 2020, L'Aquila, Italy, October 7 - 9, 2020

Abstract
The main focus of an Intelligent environment, as with other applications of Artificial Intelligence, is generally on the provision of good decisions towards the management of the environment or the support of human decision-making processes. The quality of the system is often measured in terms of accuracy or other performance metrics, calculated on labeled data. Other equally important aspects are usually disregarded, such as the ability to produce an intelligible explanation for the user of the environment. That is, asides from proposing an action, prediction, or decision, the system should also propose an explanation that would allow the user to understand the rationale behind the output. This is becoming increasingly important in a time in which algorithms gain increasing importance in our lives and start to take decisions that significantly impact them. So much so that the EU recently regulated on the issue of a “right to explanation”. In this paper we propose a Human-centric intelligent environment that takes into consideration the domain of the problem and the mental model of the Human expert, to provide intelligible explanations that can improve the efficiency and quality of the decision-making processes. © The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2021.

2020

Using a Genetic Algorithm to optimize a stacking ensemble in data streaming scenarios

Autores
Ramos, D; Carneiro, D; Novais, P;

Publicação
AI COMMUNICATIONS

Abstract
The requirements of Machine Learning applications are changing rapidly. Machine Learning models need to deal with increasing volumes of data, and need to do so quicker as responses are expected more than ever in real-time. Plus, sources of data are becoming more and more dynamic, with patterns that change more frequently. This calls for new approaches and algorithms, that are able to efficiently deal with these challenges. In this paper we propose the use of a Genetic Algorithm to Optimize a Stacking Ensemble specifically developed for streaming scenarios. A pool of solutions is maintained in which each solution represents a distribution of weights in the ensemble. The Genetic Algorithm continuously optimizes these weights to minimize the cost function. Moreover, new models are added at regular intervals, trained on more recent data. These models eventually replace older and less accurate ones, making the ensemble adapt continuously do changes in the distribution of the data.

2020

HORUS: An Emotion Recognition Tool

Autores
Teixeira, A; Rodrigues, M; Carneiro, D; Novais, P;

Publicação
INTELLIGENT SYSTEMS AND APPLICATIONS, VOL 1

Abstract
Emotion is an essential part of what means to be human, but it is still disregarded by most technical fields as something not to be considered in scientific or engineering projects. However, the understanding of emotion as an aspect of decision-making processes and of modelling of human behavior is essential to create a better connection between humans and their tools and machines. With this work we focus on the measurement of emotion of users through the use of non-intrusive methods, like measuring inputs and reactions to stimuli, along with the creation of a tool that measures the emotional changes caused by visual output created by the tool itself. Usage of the tool in a test environment and the subsequent analysis of the data obtained will allow for conclusions about the effectiveness of the method, and if it is possible to apply it to future studies on human emotions by investigators in the fields of psychology and computation.

2020

Network Analysis for Fraud Detection in Portuguese Public Procurement

Autores
Carneiro, D; Veloso, P; Ventura, A; Palumbo, G; Costa, J;

Publicação
Intelligent Data Engineering and Automated Learning - IDEAL 2020 - 21st International Conference, Guimaraes, Portugal, November 4-6, 2020, Proceedings, Part II

Abstract
As technology evolves, frauds, in all their different forms, become increasingly more complex, as mega-processes such as Luanda Leaks or Panama Papers have recently shown. Fraud detection mechanisms must thus also resort to recent technological developments to ensure that even new forms of complex fraud are detected in time. In this paper we present a system to facilitate fraud detection in Public Procurement in Portugal. It relies on three main components. Data on public procurement and involved entities is acquired from public sources and integrated into a graph-oriented database. A rules-engine enriches these data with information additional information, using legal rules or custom rules defined by the users. Finally, a graph-oriented User Interface is used to support decision-making, allowing users to quickly and efficiently explore and filter information, in a natural and geo-referenced way. The main goal of this system is to increase transparency by facilitating access to relevant information, and in this way contribute to the fairness of the whole public procurement procedure. © 2020, Springer Nature Switzerland AG.

2020

Game Elements, Motivation and Programming Learning: A Case Study

Autores
Carneiro, D; Silva, RJR;

Publicação
First International Computer Programming Education Conference, ICPEC 2020, June 25-26, 2020, ESMAD, Vila do Conde, Portugal (Virtual Conference).

Abstract
The learning of programming is traditionally challenging for students. However, this is also one of the most fundamental skills for any computer scientist, and is becoming an important skill in other areas of knowledge. In this paper we analyze the use of game-elements in a challenging long-term programming task, with students of the 3rd year of a Informatics Engineering degree. We conducted a quantitative study using the AMS scale to assess students' motivation. Results show that with the use of game-elements, students are both intrinsically and extrinsically motivated, and that they consider learning/working fun, which contributes positively to their academic performance. 2012 ACM Subject Classification Human-centered computing!Collaborative and social computing theory, concepts and paradigms.

2020

Preface

Autores
Novais, P; Lloret, J; Chamoso, P; Carneiro, D; Navarro, E; Omatu, S;

Publicação
Advances in Intelligent Systems and Computing

Abstract

  • 85
  • 225