2025
Autores
Guimarães, M; Carneiro, D; Soares, L; Ribeiro, M; Loureiro, G;
Publicação
Advances in Information and Communication - Proceedings of the 2025 Future of Information and Communication Conference (FICC), Volume 1, Berlin, Germany, 27-28 April 2025.
Abstract
The interaction between humans and technology has always been a key determinant factor of adoption and efficiency. This is true whether the interaction is with hardware, software or data. In the particular case of Information Retrieval (IR), recent developments in Deep Learning and Natural Language Processing (NLP) techniques opened the door to more natural and efficient IR means, no longer based on keywords or similarity metrics but on a distributed representation of meaning. In this paper we propose an agent-based architecture to serve as an interface with industrial systems, in which agents are powered by specific Large Language Models (LLMs). Its main goal is to make the interaction with such systems (e.g. data sources, production systems, machines) natural, allowing users to execute complex tasks with simple prompts. To this end, key aspects considered in the architecture are human-centricity and context-awareness. This paper provides a high-level description of this architecture, and then focuses on the development and evaluation of one of its key agents, responsible for information retrieval. For this purpose, we detail three application scenarios, and evaluate the ability of this agent to select the appropriate data sources to answer a specific prompt. Depending on the scenario and on the underlying model, results show an accuracy of up to 80%, showing that the proposed agent can be used to autonomously select from among several available data sources to answer a specific information need. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2025.
2025
Autores
Couto, F; Curado Malta, M;
Publicação
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Abstract
This paper contributes to developing a Method for Creating Persona Templates (MCPT), addressing a significant gap in user-centred design methodologies. Utilising qualitative data collection and analysis techniques, MCPT offers a systematic approach to developing robust and context-oriented persona templates. MCPT was created by applying the Design Science Research (DSR) methodology, and it incorporates multiple iterations for template refinement and validation among project stakeholders; all of the proposed steps of this method were based on theoretical contributions. Furthermore, MCPT was tested and refined within a real-life R&D project focusing on developing a digital platform e-marketplace for short agrifood supply chains in two iteration cycles. MCPT fills a critical void in persona research by providing detailed instructions for each step of template development. By involving the target audience, users, and project stakeholders, MCPT adds rigour to the persona creation process, enhancing the quality and relevance of personae casts. This paper contributes to the body of knowledge by offering an initial proposal of a comprehensive method for creating persona templates within diverse projects and contexts. Further research should explore MCPT’s adaptability to different settings and projects, thus refining its effectiveness and extending its utility in user-centred design practices. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2025.
2025
Autores
Paiva, LT; Mota, A; Roque, L;
Publicação
Lecture Notes in Electrical Engineering
Abstract
Airborne Wind Energy (AWE) systems represent an innovative method for capturing wind energy at high altitudes, where wind conditions are typically stronger and more consistent. These systems utilize flying devices tethered to a ground station to harness wind energy. An AWE system comprises a tether connecting the flying device to a base station, a control system for maneuvering the device, and a mechanism for converting kinetic energy into electricity. Researchers are exploring various materials, designs, and control methods to enhance the efficiency and reliability of AWE systems. Over the past decade, interest in AWE has surged, leading to a substantial increase in scholarly publications on the topic. This research conducts an in-depth bibliometric analysis. This analysis highlights emerging topics, allowing researchers to identify new trends and areas of interest within a field. By emphasizing these emerging topics, researchers and stakeholders can better align their efforts with the latest developments and opportunities in their area of study. Findings reveal that research on control techniques in AWE has grown at an average annual rate of 16% since 2013. Additionally, the study identifies the most influential aspects of the literature, including key topics, articles, authors, and keywords. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2025.
2024
Autores
Öztürk, EG; Rocha, P; Rodrigues, AM; Ferreira, JS; Lopes, C; Oliveira, C; Nunes, AC;
Publicação
DECISION SUPPORT SYSTEMS
Abstract
Sectorization problems refer to dividing a large set, area or network into smaller parts concerning one or more objectives. A decision support system (DSS) is a relevant tool for solving these problems, improving optimisation procedures, and finding feasible solutions more efficiently. This paper presents a new web-based Decision Support System for Sectorization (D3S). D3S is designed to solve sectorization problems in various areas, such as school and health districting,planning sales territories and maintenance operations zones, or political districting. Due to its generic design, D3S bridges the gap between sectorization problems and a state-of-the-art decision support tool. The paper aims to present the generic and technical attributes of D3S by providing detailed information regarding the problem-solution approach (based on Evolutionary Algorithms), objectives (most common in sectorization), constraints, structure and performance.
2024
Autores
Öztürk, EG; Rodrigues, AM; Ferreira, JS; Oliveira, CT;
Publicação
OPERATIONS RESEARCH AND DECISIONS
Abstract
Multi -objective optimization (MOO) considers several objectives to find a feasible set of solutions. Selecting a solution from Pareto frontier (PF) solutions requires further effort. This work proposes a new classification procedure that fits into the analytic hierarchy Process (AHP) to pick the best solution. The method classifies PF solutions using pairwise comparison matrices for each objective. Sectorization is the problem of splitting a region into smaller sectors based on multiple objectives. The efficacy of the proposed method is tested in such problems using our instances and real data from a Portuguese delivery company. A non -dominated sorting genetic algorithm (NSGA-II) is used to obtain PF solutions based on three objectives. The proposed method rapidly selects an appropriate solution. The method was assessed by comparing it with a method based on a weighted composite single -objective function.
2024
Autores
Torres, G; Fontes, T; Rodrigues, AM; Rocha, P; Ribeiro, J; Ferreira, JS;
Publicação
EXPERT SYSTEMS WITH APPLICATIONS
Abstract
The efficient last-mile delivery of goods involves complex challenges in optimizing driver sectors and routes. This problem tends to be large-scale and involves several criteria to meet simultaneously, such as creating compact sectors, balancing the workload among drivers, minimizing the number of undelivered packages and reducing the dissimilarity of sectors on different days. This work proposes a Decision Support System (DSS) that allows decision-makers to select improved allocation strategies to define sectors. The main contribution is an interactive DSS tool that addresses a many-objective (more than 3 objectives) sectorization problem with integrated routing. It establishes a global allocation strategy and uses it as a benchmark for the created daily allocations and routes. A Preference-Inspired Co-Evolutionary Algorithm with Goal vectors using Mating Restriction (PICEA-g-mr) is employed to solve the many-objective optimization problem. The DSS also includes a visualization tool to aid decision-makers in selecting the most suitable allocation strategy. The approach was tested in a medium-sized Metropolitan Area and evaluated using resource evaluation metrics and visualization methods. The proposed DSS deals effectively and efficiently with the sectorization problem in the context of last-mile delivery by producing a set of viable and good-quality allocations, empowering decision-makers in selecting better allocation strategies. Focused on enhancing service efficiency and driver satisfaction, the DSS serves as a valuable tool to improve overall service quality.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.