2017
Autores
Pereira, T; Mendes Moreira, APG; Veloso, MM;
Publicação
ROBOT 2017: Third Iberian Robotics Conference - Volume 1, Seville, Spain, November 22-24, 2017
Abstract
In this paper we address the allocation of perception tasks among a set of multiple robots, for tasks such as inspection, surveillance, or search in structured environments. We consider a set of target regions of interest in a mapped environment that need to be sensed by any of the robots, and the problem is to find paths for the robots that cover all the target regions with minimal cost. We consider not only sensing range when determining paths for the robots to perceive the targets, but also a sensor cost function that can be adapted to each robot’s sensor. Thus the planning has to search for paths with minimal motion and perception cost, instead of the traditional approach where line-of-sight is the only requirement in a motion cost minimization problem. Our contribution is to use planning to determine possible perception positions for every robot, which we cluster and then use as possible waypoints that can be used to construct paths for all the robots. Given the combinatorial characteristics of path determination in this setting, we contribute a construction heuristic to find paths that guarantee full coverage of all the feasible perception target regions, while minimizing the overall cost. We assume robots are heterogeneous regarding their geometric properties, such as size and maximum perception range. We consider simulated scenarios where we show the benefits of our approach, enabling multi-robot path planning for perception of multiple regions of interest. © Springer International Publishing AG 2018.
2017
Autores
Ribeiro, JD; Faria, BM; Paulo Moreira, AP; Reis, LP;
Publicação
RECENT ADVANCES IN INFORMATION SYSTEMS AND TECHNOLOGIES, VOL 3
Abstract
Over the last decades, Serious Games have gained increased importance, mainly due to the evolution and expansion of video games and its application in multiple areas. Integration in the world of sport is one of the solutions that individuals with disabilities or motor disorders develop to feel more socially integrated, more independent and confident with themselves. Boccia is a Paraly-mpic sport that is increasingly getting more attention around the world. This has contributed for the objectives of this project since it attracts these patients a lot more easily and including it in the Serious Games category enables them to develop and rehabilitate their cognitive capabilities. It will allow the users being dynamic, holding their attention and motivating them instead of the traditional cognitive rehabilitation processes that quickly become repetitive and discouraging. This paper describes a realistic Boccia game simulator adapted for people with disabilities or motor disorders still on development that aims to integrate a set of features that include real physics, multimodal user interface and social features (diversion, rehabilitation, competition and improvement). These features can be used to enhance the interest of non-practitioners of the sport and to improve the training conditions of Boccia athletes. Results observed in an experiment with real Boccia game components indicate that the simulator offers great similarity to the reality with the maximum difference between the measures obtained in both being 10 cm.
2017
Autores
Shafii, N; Farias, PCMA; Sousa, I; Sobreira, H; Reis, LP; Moreira, AP;
Publicação
PROGRESS IN ARTIFICIAL INTELLIGENCE (EPIA 2017)
Abstract
This paper aims to develop grasping and manipulation capability along with autonomous navigation and localization in a wheelchair-mounted robotic arm to serve patients. Since the human daily environment is dynamically varied, it is not possible to enable the robot to know all the objects that would be grasped. We present an approach to enable the robot to detect, grasp and manipulate unknown objects. We propose an approach to construct the local reference frame that can estimate the object pose for detecting the grasp pose of an object. The main objective of this paper is to present the grasping and manipulation approach along with a navigating and localization method that can be performed in the human daily environment. A grid map and a match algorithm is used to enable the wheelchair to localize itself using a low-power computer. The experimental results show that the robot can manipulate multiple objects and can localize itself with great accuracy.
2017
Autores
Farias, PCMA; Sousa, I; Sobreira, H; Moreira, AP;
Publicação
PROGRESS IN ARTIFICIAL INTELLIGENCE (EPIA 2017)
Abstract
In this paper it will be presented a proposal of a supervisory approach to be applied to the global localization algorithms in mobile robots. One of the objectives of this work is the increase of the robustness in the estimation of the robot's pose, favoring the anticipated detection of the loss of spatial reference and avoiding faults like tracking derail. The proposed supervisory system is also intended to increase accuracy in localization and is based on two of the most commonly used global feature based localization algorithms for pose tracking in robotics: Augmented Monte Carlo Localization (AMCL) and Perfect Match (PM). The experimental platform was a robotic wheelchair and the navigation used the sensory data from encoders and laser rangers. The software was developed using the ROS framework. The results showed the validity of the proposal, since the supervisor was able to coordinate the action of the AMCL and PM algorithms, benefiting the robot's localization system with the advantages of each one of the methods.
2017
Autores
Ferreira, F; Sobreira, HM; Veiga, G; Moreira, AP;
Publicação
ROBOT 2017: Third Iberian Robotics Conference - Volume 1, Seville, Spain, November 22-24, 2017
Abstract
For docking manoeuvres, the detection of the objects to dock needs to be precise as the minimum deviation from the objective may lead to the failure of this task. The objective of this article is to test possible ways to detect a landmark using a laser rangefinder for docking manoeuvres. We will test a beacon-based localisation algorithm and an algorithm based on natural landmarks already implemented, however, we will apply modifications to such methods. To verify the possibility of docking using these methods, we will conduct experiments with a real robot. © Springer International Publishing AG 2018.
2017
Autores
Tavares, P; Silva, JA; Costa, P; Veiga, G; Moreira, AP;
Publicação
ROBOT 2017: Third Iberian Robotics Conference - Volume 1, Seville, Spain, November 22-24, 2017
Abstract
The continuous evolution in manufacturing processes has attracted substantial interest from both scientific and research community, as well as from industry. Despite the fact that streamline manufacturing relies on automation systems, most production lines within the industrial environment lack a flexible framework that allows for evaluation and optimisation of the manufacturing process. Consequently, the development of a generic simulators able to mimic any given workflow represent a promising approach within the manufacturing industry. Recently the concept of digital twin methodology has been introduced to mimic the real world through a virtual substitute, such as, a simulator. In this paper, a solution capable of representing any industrial work cell and its properties is presented. Here we describe the key stages of such solution which has enough flexibility to be applied to different working scenarios commonly found in industrial environment. © 2018, Springer International Publishing AG.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.