Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por CRIIS

2024

UAV Visual and Thermographic Power Line Detection Using Deep Learning

Autores
Santos, T; Cunha, T; Dias, A; Moreira, AP; Almeida, J;

Publicação
SENSORS

Abstract
Inspecting and maintaining power lines is essential for ensuring the safety, reliability, and efficiency of electrical infrastructure. This process involves regular assessment to identify hazards such as damaged wires, corrosion, or vegetation encroachment, followed by timely maintenance to prevent accidents and power outages. By conducting routine inspections and maintenance, utilities can comply with regulations, enhance operational efficiency, and extend the lifespan of power lines and equipment. Unmanned Aerial Vehicles (UAVs) can play a relevant role in this process by increasing efficiency through rapid coverage of large areas and access to difficult-to-reach locations, enhanced safety by minimizing risks to personnel in hazardous environments, and cost-effectiveness compared to traditional methods. UAVs equipped with sensors such as visual and thermographic cameras enable the accurate collection of high-resolution data, facilitating early detection of defects and other potential issues. To ensure the safety of the autonomous inspection process, UAVs must be capable of performing onboard processing, particularly for detection of power lines and obstacles. In this paper, we address the development of a deep learning approach with YOLOv8 for power line detection based on visual and thermographic images. The developed solution was validated with a UAV during a power line inspection mission, obtaining mAP@0.5 results of over 90.5% on visible images and over 96.9% on thermographic images.

2024

Positioning Cyber-Physical Systems and Digital Twins in Industry 4.0

Autores
Pires, F; Melo, V; Queiroz, J; Moreira, AP; de la Prieta, F; Estévez, E; Leitao, P;

Publicação
2024 IEEE 7TH INTERNATIONAL CONFERENCE ON INDUSTRIAL CYBER-PHYSICAL SYSTEMS, ICPS 2024

Abstract
Industry 4.0 has brought innovative concepts and technologies that have greatly improved the development of more intelligent, flexible and reconfigurable systems. Two of these concepts, Cyber-Physical Systems (CPSs) and Digital Twins (DTs), have gained significant attention from various stakeholders, e.g., researchers, industry practitioners, and governmental organizations. Both are vital to support the digitalisation of products, machines, and systems, and they focus on the integration of physical and cyber processes, where one affects the other through feedback loops. Having this in mind, this paper aims to better understand how CPS and DT are correlated, particularly exploring their similarities and differences, their positioning within the Industry 4.0 paradigm, and their convergence to develop Industry 4.0 solutions. Some research challenges to develop Industry 4.0 solutions by integrating these concepts are also discussed.

2024

BVE + EKF: A Viewpoint Estimator for the Estimation of the Object's Position in the 3D Task Space Using Extended Kalman Filters

Autores
Magalhães, SC; Moreira, AP; dos Santos, FN; Dias, J;

Publicação
Proceedings of the 21st International Conference on Informatics in Control, Automation and Robotics, ICINCO 2024, Porto, Portugal, November 18-20, 2024, Volume 2.

Abstract
RGB-D sensors face multiple challenges operating under open-field environments because of their sensitivity to external perturbations such as radiation or rain. Multiple works are approaching the challenge of perceiving the three-dimensional (3D) position of objects using monocular cameras. However, most of these works focus mainly on deep learning-based solutions, which are complex, data-driven, and difficult to predict. So, we aim to approach the problem of predicting the three-dimensional (3D) objects’ position using a Gaussian viewpoint estimator named best viewpoint estimator (BVE), powered by an extended Kalman filter (EKF). The algorithm proved efficient on the tasks and reached a maximum average Euclidean error of about 32mm. The experiments were deployed and evaluated in MATLAB using artificial Gaussian noise. Future work aims to implement the system in a robotic system. © 2024 by SCITEPRESS-Science and Technology Publications, Lda.

2024

Cold-Start and Data Sparsity Problems in a Digital Twin Based Recommendation System

Autores
Pires, F; Moreira, AP; Leitao, P;

Publicação
29th IEEE International Conference on Emerging Technologies and Factory Automation, ETFA 2024, Padova, Italy, September 10-13, 2024

Abstract
The emergence of Digital Twins (DT) in Industry 4.0 has enabled the decision support systems taking advantage of more effective recommendation systems (RS). Despite the RS's growing popularity and ability to support decision-makers, these face two significant challenges, cold-start and data sparsity, which limits the system's capability to provide effective and accurate decision support. This paper aims to address these issues by conducting a literature review, analysing the current research landscape, and identifying the main enabling methods, algorithms, and similarity measures to mitigate these challenges. The performed analysis enables the point out of future research directions for developing effective and accurate RS that empower decision-makers. © 2024 IEEE.

2024

Model Predictive Control for B-Spline Trajectory Tracking in Omnidirectional Robots

Autores
Carvalho, JP; Moreira, AP; Aguiar, AP;

Publicação
2024 7TH IBERIAN ROBOTICS CONFERENCE, ROBOT 2024

Abstract
In the field of intelligent autonomous robots, integrating optimization techniques with classical control theory methods for mobile robot control is an increasingly prominent area of research. The combination enhances robots' ability to perform their tasks more efficiently, reliably, and safely. This paper addresses the development of a path and motion planning framework for omnidirectional robots, leveraging B-Splines and Trajectory Tracking with Model Predictive Control. The proposed framework is evaluated through software-in-the-loop tests using two distinct dynamical models and sets of hyperparameters. Final validation is conducted by implementing the framework within a ROS environment and performing field tests on a robotic platform. The results demonstrate that the robot can reliably track trajectories at its actuation limits, and the proposed framework enables the robot to increase its velocity up to 50% when compared to a PID path-following controller.

2024

Comparison of Pallet Detection and Location Using COTS Sensors and AI Based Applications

Autores
Caldana, D; Carvalho, R; Rebelo, PM; Silva, MF; Costa, P; Sobreira, H; Cruz, N;

Publicação
ROBOT 2023: SIXTH IBERIAN ROBOTICS CONFERENCE ADVANCES IN ROBOTICS, VOL 1

Abstract
Autonomous Mobile Robots (AMR) are seeing an increased introduction in distinct areas of daily life. Recently, their use has expanded to intralogistics, where forklift type AMR are applied in many situations handling pallets and loading/unloading them into trucks. One of the these vehicles requirements, is that they are able to correctly identify the location and status of pallets, so that the forklifts AMR can insert the forks in the right place. Recently, some commercial sensors have appeared in the market for this purpose. Given these considerations, this paper presents a comparison of the performance of two different approaches for pallet detection: using a commercial off-the-shelf (COTS) sensor and a custom developed application based on Artificial Intelligence algorithms applied to an RGB-D camera, where both the RGB and depth data are used to estimate the position of the pallet pockets.

  • 20
  • 366