2019
Autores
Szabó, D; Justo, J; Silva, MF; Ferreira, P; Guedes, P; Gillet, E; Vallés, I; Pereira, J; Keppens, M; Krommendijk, P; Duarte, AJ; Malheiro, B; Ribeiro, C;
Publicação
TEEM'19: SEVENTH INTERNATIONAL CONFERENCE ON TECHNOLOGICAL ECOSYSTEMS FOR ENHANCING MULTICULTURALITY
Abstract
This paper provides an overview of the development of a solar dehydrator, a project undertaken by a team of six Erasmus students from different countries during the European Project Semester at the Instituto Superior de Engenharia do Porto in the spring of 2019. The main objective of the European Project Semester is to develop teamwork, communication and problem-solving skills through team work and project-based learning. The purpose of the project was to design a sustainable solution to dehydrate and preserve food, build and test the corresponding proof-of-concept prototype, while respecting requirements such as the budget, the use of reusable materials and components or European Union directives. To achieve this goal, the team considered the technological, ethical and deontological, economic and environmental perspectives in the design of the Dryfoo prototype. This paper describes, after a short introduction, the performed research, the development and the testing of the proof-of-concept prototype, as well as the personal outcomes of this learning experience.
2019
Autores
Ferreira, P; Malheiro, B; Silva, M; Justo, J; Guedes, P; Duarte, A; Ribeiro, C;
Publicação
EDULEARN19: 11TH INTERNATIONAL CONFERENCE ON EDUCATION AND NEW LEARNING TECHNOLOGIES
Abstract
The European Project Semester (EPS) project-based learning framework is a multicultural and multidisciplinary one semester engineering capstone programme provided by a network of European Higher Education institutions. Its aim is to prepare 3rd-year undergraduate students to their future professional life, enhancing hard and soft skills and following ethical and sustainable design and development practices. At the School of Engineering of Porto Polytechnic (ISEP) the focus of the EPS programme (EPS@ISEP) is on solving multidisciplinary problems through teamwork, involving engineering, design and business students [1]. The students work in teams of 5 to 6 students, assembled according to the identified Belbin team roles, and also maximizing student cultural and scientific diversity. On the first week each team chooses to solve one of the open-ended multidisciplinary problems on offer. Those projects involve typically some type of automation and control[2]. One of the obstacles these eclectic teams face is the lack of hardware/software skills required to design, assemble and test a microcontroller based systems. To help overcome this situation, the programme syllabus includes an 8-hour intensive "Arduino & Electronics Crash Course" at the beginning of the semester due to its market penetration, low-cost, availability of documentation and support, and soft learning curve. This course has effectively contributed to provide students with the necessary knowledge to design and implement simple control systems, leading to the adoption in multiple EPS@ISEP past projects of the Arduino platform/ecosystem. However, the crescent sophistication of the projects, namely the integration with Internet of Things (IoT) platforms, requires the definition of a new strategy, considering the available hardware/software alternatives. This paper analyses the experience of the EPS@ISEP students regarding the use of microcontroller based platforms in the development of engineering capstone projects, and proposes possible future hardware/software alternatives, both from the technical and pedagogical perspectives.
2019
Autores
Costa, AC; Pimenta, S; Ribeiro, JF; Silva, MF; Wolffenbuttel, RF; Dong, T; Yang, Z; Correia, JH;
Publicação
Sensors
Abstract
2019
Autores
Montes H.; Tokhi M.O.; Virk G.S.; Armada M.; Rodríguez H.; Fernández R.; González De Santos P.; Sánchez V.; Silva M.;
Publicação
Robotics Transforming the Future - Proceedings of the 21st International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines, CLAWAR 2018
Abstract
2019
Autores
Krueger, V; Rovida, F; Grossmann, B; Petrick, R; Crosby, M; Charzoule, A; Garcia, GM; Behnke, S; Toscano, C; Veiga, G;
Publicação
ROBOTICS AND COMPUTER-INTEGRATED MANUFACTURING
Abstract
In recent years, cognitive robots have started to find their way into manufacturing halls. However, the full potential of these robots can only be exploited through (a) an integration of the robots with the Manufacturing Execution System (MES), (b) a new and simpler way of programming based on robot skills, automated task planning, and knowledge modeling, and (c) enabling the robots to function in a shared human/robot workspace with the ability to handle unexpected situations. The STAMINA project has built a robotic system that meets these objectives for an automotive kitting application, which has also been tested, validated, and demonstrated in a relevant environment (TRL6). This paper describes the STAMINA robot system and the evaluation of this system on a series of realistic kitting tasks. The structure of the system, evaluation methodology, and experimental results, are presented along with the insights and experiences gained from this work.
2019
Autores
Perzylo, A; Rickert, M; Kahl, B; Somani, N; Lehmann, C; Kuss, A; Profanter, S; Beck, AB; Haage, M; Hansen, MR; Roa Garzon, M; Sornmo, O; Gestegard Robertz, S; Thomas, U; Veiga, G; Topp, EA; Kessler, I; Danzer, M;
Publicação
IEEE ROBOTICS & AUTOMATION MAGAZINE
Abstract
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.