2020
Autores
Martins, A; Costelha, H; Neves, C;
Publicação
2020 IEEE INTERNATIONAL CONFERENCE ON AUTONOMOUS ROBOT SYSTEMS AND COMPETITIONS (ICARSC 2020)
Abstract
In a context of greater complexity of Smart Factories, the commissioning time for automated systems needs to be shortened. The use of virtual commissioning tools is a good contribution to achieve this goal. Ideally, those tools should be part of a virtual engineering environment sharing same virtual model, the digital twin, through the complete lifecycle of the automated system, namely the project, simulation, implementation and execution/monitoring/supervision and, eventually decommissioning phases. Such vision includes a digital twin with a broader use, which is consistent with the real system and one that can be used after the early design and commissioning phases. Finding a complete set of tools able to comply with the above requirements can be extremely challenging. In this paper we explore the use of the ABB RobotStudio software combined with the OPC UA standard with this vision in mind. Methodologies were defined to integrate both new generation and legacy equipment, as well as robot controllers and guidelines for equipment development. A key result of this work is the development of a set of virtual engineering tools and methodologies based on OPC UA and implemented using RobotStudio in order to accomplish the complete lifecycle support of an automated system, from the project and simulation phases, to the monitoring and supervision phases, suitable for integration in Industry 4.0 factories. Results are described for a test scenario with different devices.
2020
Autores
Martins, PF; Costelha, H; Bento, LC; Neves, C;
Publicação
2020 IEEE INTERNATIONAL CONFERENCE ON AUTONOMOUS ROBOT SYSTEMS AND COMPETITIONS (ICARSC 2020)
Abstract
Autonomous driving is currently a widely researched topic worldwide. With a large research effort being taken by industrial research units in the automotive sector, it is no longer exclusive to academic research labs. Essential to this ongoing effort towards level-5 vehicle autonomy, are the sensors used for tracking and detection, mainly lasers, radars and cameras. Most of the cameras for automotive application systems use wide-angle or fish-eye lens, which present high distortion levels. Cameras need to be calibrated for correct perception, particularly for capturing geometry features, or for distance-based calculations. This paper describes a case-study concerning monocular camera calibration for a small scale autonomous driving vehicle vision system. It describes the fundamentals on camera calibration and implementation, with results given for different lenses and distortion models. The aim of the paper is not only to provide a detailed and comprehensive review on the application of these calibration methods, but to serve also as a reference document for other researchers and developers starting to use monocular vision in their robotic applications.
2020
Autores
Silva, B; Costelha, H; Bento, LC; Barata, M; Assuncao, P;
Publicação
SENSORS
Abstract
Remote control devices are commonly used for interaction with multimedia equipment and applications (e.g., smart TVs, gaming, etc.). To improve conventional keypad-based technologies, haptic feedback and user input capabilities are being developed for enhancing the UX and providing advanced functionalities in remote control devices. Although the sensation provided by haptic feedback is similar to mechanical push buttons, the former offers much greater flexibility, due to the possibility of dynamically choosing different mechanical effects and associating different functions to each of them. However, selecting the best haptic feedback effects among the wide variety that is currently enabled by recent technologies, remains a challenge for design engineers aiming to optimise the UX. Rich interaction further requires text input capability, which greatly influences the UX. This work is a contribution towards UX evaluation of remote control devices with haptic feedback and text input. A user evaluation study of a wide variety of haptic feedback effects and text input methods is presented, considering different technologies and different number of actuators on a device. The user preferences, given by subjective evaluation scores, demonstrate that haptic feedback has undoubtedly a positive impact on the UX. Moreover, it is also shown that different levels of UX are obtained, according to the technological characteristics of the haptic actuators and how many of them are used on the device.
2020
Autores
Costelha, H; Calado, J; Bento, LC; Oliveira, P;
Publicação
JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS
Abstract
2020
Autores
Oliveira, PM; Pires, EJS; Boaventura Cunha, J; Pinho, TM;
Publicação
TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL
Abstract
A significant number of search and optimisation techniques whose principles seek inspiration from nature and biology phenomena have been proposed in the last decades. These methods have been successfully applied to solve a wide range of engineering problems. This is also the case of greenhouse environment control, which has been incorporating this type of techniques into its design. This paper addresses evolutionary and bio-inspired methods in the context of greenhouse environment control. Algorithm principles for reference techniques are reviewed, namely: simulated annealing, genetic algorithm, differential evolution and particle swarm optimisation. The last three techniques are considered using single and multiple objective formulations. A review of these algorithms within greenhouse environment control applications is presented, considering single and multiple objective problems, as well as their current trends.
2020
Autores
Oliveira, J; Oliveira, PM; Boaventura Cunha, J; Pinho, T;
Publicação
ROBOTICS
Abstract
The design of Multi-Input Multi-Output nonlinear control systems for a quadrotor can be a difficult task. Nature inspired optimization techniques can greatly improve the design of non-linear control systems. Two recently proposed hunting-based swarm intelligence inspired techniques are the Grey Wolf Optimizer (GWO) and the Ant Lion Optimizer (ALO). This paper proposes the use of both GWO and ALO techniques to design a Sliding Mode Control (SMC) flight system for tracking improvement of altitude and attitude in a quadrotor dynamic model. SMC is a nonlinear technique which requires that its strictly coupled parameters related to continuous and discontinuous components be correctly adjusted for proper operation. This requires minimizing the tracking error while keeping the chattering effect and control signal magnitude within suitable limits. The performance achieved with both GWO and ALO, considering realistic disturbed flight scenarios are presented and compared to the classical Particle Swarm Optimization (PSO) algorithm. Simulated results are presented showing that GWO and ALO outperformed PSO in terms of precise tracking, for ideal and disturbed conditions. It is shown that the higher stochastic nature of these hunting-based algorithms provided more confidence in local optima avoidance, suggesting feasibility of getting a more precise tracking for practical use.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.