Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por CRIIS

2021

Programming Robots by Demonstration Using Augmented Reality

Autores
Soares, I; Petry, M; Moreira, AP;

Publicação
SENSORS

Abstract
The world is living the fourth industrial revolution, marked by the increasing intelligence and automation of manufacturing systems. Nevertheless, there are types of tasks that are too complex or too expensive to be fully automated, it would be more efficient if the machines were able to work with the human, not only by sharing the same workspace but also as useful collaborators. A possible solution to that problem is on human-robot interaction systems, understanding the applications where they can be helpful to implement and what are the challenges they face. This work proposes the development of an industrial prototype of a human-machine interaction system through Augmented Reality, in which the objective is to enable an industrial operator without any programming experience to program a robot. The system itself is divided into two different parts: the tracking system, which records the operator's hand movement, and the translator system, which writes the program to be sent to the robot that will execute the task. To demonstrate the concept, the user drew geometric figures, and the robot was able to replicate the operator's path recorded.

2021

Recommendation System using Reinforcement Learning for What-If Simulation in Digital Twin

Autores
Pires, F; Ahmad, B; Moreira, AP; Leitão, P;

Publicação
19th IEEE International Conference on Industrial Informatics, INDIN 2021, Palma de Mallorca, Spain, July 21-23, 2021

Abstract
The research about the digital twin concept is growing worldwide, especially in the industrial sector, due to the increasing digitisation level associated to Industry 4.0. The application of the digital twin concept improves performance of a system by implementing monitoring, diagnosis, optimisation, and decision support actions. In particular, the decision-making process is very time consuming since the decision-maker is presented with hundreds of different scenarios that can be simulated and assessed in a what-if perspective. Bearing this in mind, this paper proposes to integrate a digital twin-based what-if simulation with a recommendation system to improve the decision-making cycle. The recommendation system is based on a reinforcement learning technique and takes user knowledge of the system into consideration and trust in the system recommendation. The applicability of the proposed approach is presented in an assembly line case study for recommending the best configurations for the system operation, in terms of the optimal number of AGVs (Autonomous Guided Vehicles) in various scenarios. The achieved results show its successful application and highlight the benefits of using AI-based recommendation systems for what-if simulation in digital twin systems. © 2021 IEEE.

2021

Routing and schedule simulation of a biomass energy supply chain through SimPy simulation package

Autores
Pinho T.M.; Coelho J.P.; Oliveira P.M.; Oliveira B.; Marques A.; Rasinmäki J.; Moreira A.P.; Veiga G.; Boaventura-Cunha J.;

Publicação
Applied Computing and Informatics

Abstract
The optimisation of forest fuels supply chain involves several entities actors, and particularities. To successfully manage these supply chains, efficient tools must be devised with the ability to deal with stakeholders dynamic interactions and to optimize the supply chain performance as a whole while being stable and robust, even in the presence of uncertainties. This work proposes a framework to coordinate different planning levels and event-based models to manage the forest-based supply chain. In particular, with the new methodology, the resilience and flexibility of the biomass supply chain is increased through a closed-loop system based on the system forecasts provided by a discrete-event model. The developed event-based predictive model will be described in detail, explaining its link with the remaining elements. The implemented models and their links within the proposed framework are presented in a case study in Finland and results are shown to illustrate the advantage of the proposed architecture.

2021

Trust Model for Digital Twin Based Recommendation System

Autores
Pires, F; Moreira, AP; Leitão, P;

Publicação
Service Oriented, Holonic and Multi-agent Manufacturing Systems for Industry of the Future - Proceedings of SOHOMA 2021, Cluny, France, 18-19 November 2021.

Abstract
The digital twin has been gaining significant attention from the academia and industry sectors in the last few years. The digital twin concept enables monitoring, diagnosis, optimisation, and decision support tasks to improve industrial systems operation. One of the identified challenges in this field is the need to improve the decision support cycle by decreasing decision-making time and improving the accuracy of recommendations by considering human intervention in the cycle. Bearing this in mind, the paper explores the use of trust models to improve the recommendation cycle in the digital twin. For this purpose, a literature overview on trust applied in recommendation systems was performed, focusing on the concept, its properties and previous models. Considering this analysis, a trust-based model is specified in a digital twin artificial intelligence-based recommendation system. © 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.

2021

A* Based Routing and Scheduling Modules for Multiple AGVs in an Industrial Scenario

Autores
Santos, J; Rebelo, PM; Rocha, LF; Costa, P; Veiga, G;

Publicação
ROBOTICS

Abstract
A multi-AGV based logistic system is typically associated with two fundamental problems, critical for its overall performance: the AGV's route planning for collision and deadlock avoidance; and the task scheduling to determine which vehicle should transport which load. Several heuristic functions can be used according to the application. This paper proposes a time-based algorithm to dynamically control a fleet of Autonomous Guided Vehicles (AGVs) in an automatic warehouse scenario. Our approach includes a routing algorithm based on the A* heuristic search (TEA*-Time Enhanced A*) to generate free-collisions paths and a scheduling module to improve the results of the routing algorithm. These modules work cooperatively to provide an efficient task execution time considering as basis the routing algorithm information. Simulation experiments are presented using a typical industrial layout for 10 and 20 AGVs. Moreover, a comparison with an alternative approach from the state-of-the-art is also presented.

2021

Machine Learning Optimization for Robotic Welding Parametrization

Autores
Couto, T; Costa, P; Malaca, P; Tavares, P;

Publicação
2021 IEEE INTERNATIONAL CONFERENCE ON AUTONOMOUS ROBOT SYSTEMS AND COMPETITIONS (ICARSC)

Abstract
Welding physics is complex, and therefore the welding parametrization is time-consuming. In manual welding, the "hand", the experience, and the best sensor of all (the eyes) can compensate for the difficulties in finding the right settings (welding parameters, robot posture, speed,...) for a specific weld seam. In robotic welding the robotic arm and the sensors are limited, and the parametrization time escalates. This work aims to develop a flexible welding robotized system, through the introduction of (knowledge-based) decision support for welding parametrization in an advanced robotic work cell, in combination with advanced (collision-free) offline programming and advanced sensing. By selecting a specific application area, structural steel, this work will reduce the degree of complexity during the development, paving the way for the introduction of knowledge-based welding in the robotic arc welding sector.

  • 105
  • 369