2021
Autores
Brito, T; Lima, J; Braun, J; Piardi, L; Costa, P;
Publicação
Lecture Notes in Electrical Engineering
Abstract
Industrial Manipulators were becoming used more and more at industries since the third industrial revolution. Actually, with the fourth one, the paradigm is changing and the collaborative robots are being accepted for the community. It means that smaller manipulators with more functionalities have been used and installed. New approaches have appeared to teach students according to the new robot’s capabilities. The DOBOT robot is an example of that since it captivates the student’s attention with an uncomplicated programming front-end, tools, grippers and extremely useful for teaching STEM. This paper proposes a dynamic based simulation environment that can be used to teach, test and validate solutions to the DOBOT robot. By this way, the student can try and validate, at their homework without the real robot, the developed solutions and further test them at the laboratory with the real robot. Currently, remote testing and validation without the use of a real robot is an advantage. The comparison of the provided simulation environment and the real robot is presented in the approach. © The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2021.
2021
Autores
Piardi, L; Lima, J; De Oliveira, AS;
Publicação
PROCEEDINGS OF THE 11TH INTERNATIONAL CONFERENCE ON SIMULATION AND MODELING METHODOLOGIES, TECHNOLOGIES AND APPLICATIONS (SIMULTECH)
Abstract
The advancement of technology and techniques applied to robotics contributes to increasing the quality of life and safety of humanity. One of the most widespread applications of mobile robotics is related to monitoring indoor environments. However, due to factors such as the size of the environment impacting the monitoring response, battery autonomy, and autonomous navigation in environments with unknown obstacles, they are still significant challenges in the diffusion of mobile robotics in these areas. Strategy adopting multiple robots can overcome these challenges. This work presents an approach to use multi-robots in hazardous environments with gas leakage to perform spatial mapping of the gas concentration. Obstacles arranged in the environment are unknown to robots, then a fuzzy control approach is used to avoid the collision. As a result of this paper, spatial mapping of an indoor environment was carried out with multi-robots that reactively react to unknown obstacles considering a point gas leak with Gaussian dispersion.
2021
Autores
Sestrem, L; Kaizer, R; Goncalves, J; Leitao, P; Teixeira, JP; Lima, J; Franco, T; Carvalho, JA;
Publicação
PROCEEDINGS OF THE 15TH INTERNATIONAL JOINT CONFERENCE ON BIOMEDICAL ENGINEERING SYSTEMS AND TECHNOLOGIES (BIODEVICES), VOL 1
Abstract
Data acquisition by electromyography, as well as the muscle stimulation, has become more accessible with the new developments in the wearable technology and medicine. In fact, for treatments, games or sports, it is possible to find examples of the use of muscle signals to analyse specific aspects related, e.g., to disease, injuries or movement impulses. However, these systems are usually expensive, does not integrate data acquisition with the muscle stimulation and does not exhibit an adaptive control behaviour that consider the pathology and the patient response. This paper presents a wearable system that integrates the signal acquisition and the electrostimulation using dry thin-film titanium-based electrodes. The acquired data is transmitted to a mobile application running on a smartphone by using Bluetooth Low Energy (BLE) technology, where it is analysed by employing artificial intelligence algorithms to provide customised treatments for each patient profile and type of pathology, and taking into consideration the feedback of the acquired electromyography signal. The acquired patient's data is also stored in a secure cloud database to support the physician to analyse and follow-up the clinical results from the rehabilitation process.
2021
Autores
Amoura, Y; Pereira, AI; Lima, J;
Publicação
Algorithms for Intelligent Systems - Proceedings of International Conference on Communication and Computational Technologies
Abstract
2021
Autores
de Souza, JPC; Costa, CM; Rocha, LF; Arrais, R; Moreira, AP; Pires, EJS; Boaventura Cunha, J;
Publicação
ROBOTICS AND COMPUTER-INTEGRATED MANUFACTURING
Abstract
Several approaches with interesting results have been proposed over the years for robot grasp planning. However, the industry suffers from the lack of an intuitive and reliable system able to automatically estimate grasp poses while also allowing the integration of grasp information from the accumulated knowledge of the end user. In the presented paper it is proposed a non-object-agnostic grasping pipeline motivated by picking use cases from the aerospace industry. The planning system extends the functionality of the simulated annealing optimization algorithm for allowing its application within an industrial use case. Therefore, this paper addresses the first step of the design of a reconfigurable and modular grasping pipeline. The key idea is the creation of an intuitive and functional grasping framework for being used by factory floor operators according to the task demands. This software pipeline is capable of generating grasp solutions in an offline phase, and later on, in the robot operation phase, can choose the best grasp pose by taking into consideration a set of heuristics that try to achieve a successful grasp while also requiring the least effort for the robotic arm. The results are presented in a simulated and a real factory environment, relying on a mobile platform developed for intralogistic tasks. With this architecture, new state-of-art methodologies can be integrated in the future for growing the grasping pipeline and make it more robust and applicable to a wider range of use cases.
2021
Autores
Baltazar, AR; Petry, MR; Silva, MF; Moreira, AP;
Publicação
SN APPLIED SCIENCES
Abstract
The transport of patients from the inpatient service to the operating room is a recurrent task in a hospital routine. This task is repetitive, non-ergonomic, time consuming, and requires the labor of patient transporters. In this paper is presented a system, named Connected Driverless Wheelchair, that can receive transportation requests directly from the hospital information management system, pick up patients at their beds, navigate autonomously through different floors, avoid obstacles, communicate with elevators, and drop patients off at the designated operating room. As a result, a prototype capable of transporting patients autonomously in hospital environments was obtained. Although it was impossible to test the final developed system at the hospital as planned, due to the COVID-19 pandemic, the extensive tests conducted at the robotics laboratory facilities, and our previous experience in integrating mobile robots in hospitals, allowed to conclude that it is perfectly prepared for this integration to be carried out.The achieved results are relevant since this is a system that may be applied to support these types of tasks in the future, making the transport of patients more efficient (both from a cost and time perspective), without unpredictable delays and, in some cases, safer.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.