2025
Autores
Cunha, A; Campos, MJ; Ferreira, MC; Fernandes, CS;
Publicação
Teaching and Learning in Nursing
Abstract
Background: During their training, nurses must develop interprofessional collaboration skills, which are essential in clinical settings. Aim: This study aims to describe the development and testing stages of a virtual escape room, named "Lockdown Treatment", to enhance interprofessional collaboration. Methods: The User-Centered Design methodology was used, involving users from requirement gathering to iterative prototyping. Requirements were established through interviews with 6 healthcare professionals, and a prototype was developed and tested for final assessment. Results: The results identified key areas for improvement, particularly in terms of timing and support during the game and demonstrated the effectiveness of the escape room in promoting interdisciplinary collaboration. This study proves that tools like escape rooms can significantly enrich nursing education. Conclusion: It is essential to integrate innovative methods into interprofessional training, making it more engaging and interactive. However, it is crucial that such tools are meticulously planned and validated to ensure their suitability through a rigorous validation process. Future research should evaluate the ‘Lockdown Treatment’ to assess its long-term effectiveness and applicability in clinical practice and patient outcomes. © 2025 The Authors
2025
Autores
Cerqueira, F; Ferreira, MC; Campos, MJ; Fernandes, CS;
Publicação
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE
Abstract
Background: The study aims to present and explain the development stages of a mobile app designed to improve health literacy for self-management of oncological diseases. Through the integration of gamification, the app aims to enhance patient engagement and education in an interactive manner. Methods: The methodology of Design Science in Information Systems and Software Engineering was employed, which included stages of needs identification, requirements definition, prototyping, and iterative validation of the developed artifact. A total of 132 participants, consisting of patients and healthcare professionals, were involved in the development of the PocketOnco application. The subsequent implementation of the App, PocketOnco, involved usability testing, System Usability Scale assessment, and the collection of qualitative feedback. Results: The usability testing analysis revealed excellent acceptance of PocketOnco, with the gamified elements such as quizzes and reward systems being particularly appreciated for their ability to consistently engage and motivate users. Conclusion: The various stages in the development of this resource ensure the quality of its purpose. The application proved to be a viable and attractive solution for both patients and healthcare professionals, suggesting a promising path for future digital interventions in the field of oncology.
2025
Autores
Amarelo, A; da Mota, MCC; Amarelo, BLP; Ferreira, MC; Fernandes, CS;
Publicação
PAIN MANAGEMENT NURSING
Abstract
Objective: The aim of this systematic review and meta-analysis is to systematically collect, evaluate, and critically synthesize research findings on the effects of physical exercise on chemotherapy-induced peripheral neuropathy (CIPN). Method: The Joanna Briggs Institute (JBI) methodology for systematic reviews was adopted for this study. We searched the Medline (R), CINAHL, SportDiscus, and Scopus databases to identify relevant articles published from inception to March 2024. This review was reported in accordance with the guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). Results: Twelve studies met the inclusion criteria, totaling 928 participants. Interventions ranged from aerobic and resistance exercises to balance and strength training. A range of physical exercise interventions was explored, including brisk walking, endurance training, weight exercises, and resistance bands, as well as combined programs of aerobics, resistance, and balance training, all tailored to improve symptoms and quality of life in patients with chemotherapy-induced peripheral neuropathy. The meta-analysis focused on five studies that used the FACT/GOG-Ntx scale indicated a standardized mean difference of 0.50 (95% CI: 0.26, 0.74), favoring exercise, reflecting significant improvements in neuropathy symptoms. The heterogeneity among the studies was low (I 2 = 2%), suggesting consistency in the beneficial effects of exercise. Conclusions: From the results analyzed, the descriptive analysis of the 12 included studies shows promising outcomes not only related to individuals' perceptions of CIPN severity but also in terms of physical functioning, balance, ADL (Activities of Daily Living) performance, pain, and quality of life. The findings support the integration of structured exercise programs into oncological treatment plans. (c) 2024 The Authors. Published by Elsevier Inc. on behalf of American Society for Pain Management Nursing. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)
2025
Autores
Oliveira, BB; Ahipasaoglu, SD;
Publicação
TRANSPORTATION RESEARCH PART E-LOGISTICS AND TRANSPORTATION REVIEW
Abstract
Balancing supply and demand in free-floating one-way carsharing systems is a critical operational challenge. This paper presents a novel approach that integrates a binary logit model into a mixed integer linear programming framework to optimize short-term pricing and fleet relocation. Demand modeling, based on a binary logit model, aggregates different trips under a unified utility model and improves estimation by incorporating information from similar trips. To speed up the estimation process, a categorizing approach is used, where variables such as location and time are classified into a few categories based on shared attributes. This is particularly beneficial for trips with limited observations as information gained from similar trips can be used for these trips effectively. The modeling framework adopts a dynamic structure where the binary logit model estimates demand using accumulated observations from past iterations at each decision point. This continuous learning environment allows for dynamic improvement in estimation and decision-making. At the core of the framework is a mathematical program that prescribes optimal levels of promotion and relocation. The framework then includes simulated market responses to the decisions, allowing for real-time adjustments to effectively balance supply and demand. Computational experiments demonstrate the effectiveness of the proposed approach and highlight its potential for real-world applications. The continuous learning environment, combining demand modeling and operational decisions, opens avenues for future research in transportation systems.
2025
Autores
Andrade, PRD; De Araujo, SA; Cherri, AC; Lemos, FK;
Publicação
TOP
Abstract
This paper studies the process of cutting steel bars in a truck suspension factory with the objective of reducing its inventory costs and material losses. A mathematical model is presented that focuses on decisions for a medium-term horizon (4 periods of 2 months). This approach addresses the one-dimensional 3-level integrated lot sizing and cutting stock problem, considering demand, inventory costs and stock level limits for bars (objects-level 1), springs (items-level 2) and spring bundles (final products-level 3), as well as the acquisition of bars as a decision variable. The solution to the proposed mathematical model is reached through an optimization package, using column generation along with a method for achieving integer solutions. The results obtained with real data demonstrate that the method provides significantly better solutions than those carried out at the company, whilst using reduced computational time. Additionally, the application of tests with random data enabled the analysis of both the effect of varying parameters in the solution, which provides managerial insights, and the overall performance of the method.
2024
Autores
Ali, S; Ramos, AG; Carravilla, MA; Oliveira, JF;
Publicação
APPLIED SOFT COMPUTING
Abstract
In online three-dimensional packing problems (3D-PPs), unlike offline problems, items arrive sequentially and require immediate packing decisions without any information about the quantities and sizes of the items to come. Heuristic methods are of great importance in solving online problems to find good solutions in a reasonable amount of time. However, the literature on heuristics for online problems is sparse. As our first contribution, we developed a pool of heuristics applicable to online 3D-PPs with complementary performance on different sets of instances. Computational results showed that in terms of the number of used bins, in all problem instances, at least one of our heuristics had a better or equal performance compared to existing heuristics in the literature. The developed heuristics are also fully applicable to an intermediate class between offline and online problems, referred to in this paper as a specific type of semi-online with full look-ahead, which has several practical applications. In this class, as in offline problems, complete information about all items is known in advance (i.e., full look-ahead); however, due to time or space constraints, as in online problems, items should be packed immediately in the order of their arrival. As our second contribution, we presented an algorithm selection framework, building on developed heuristics and utilizing prior information about items in this specific class of problems. We used supervised machine learning techniques to find the relationship between the features of problem instances and the performance of heuristics and to build a prediction model. The results indicate an 88% accuracy in predicting (identifying) the most promising heuristic(s) for solving any new instance from this class of problems.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.